
1 

Chapter 1: 
A Data Utility Model for Data Intensive 
Applications in Fog Environments 
 
Cinzia Cappiello, Pierluigi Plebani, Monica Vitali 
 
Politecnico di Milano – Dipartimento di Elettronica ed Informazione 
Piazza Leonardo da Vinci 32, 20133 Milano, Italy 
 

Abstract: Sensors, smart devices, and wearables have been widely adopted in 
recent years, bringing to the production of a big amount of data which can be 
shared between several applications using these data as input for their analysis. 
Data intensive applications can get advantage of these data only if they are reliable 
and if they fit the requirements of the application. Designing data intensive 
applications requires a trade-off between the value obtained by the analysis of the 
data, which is affected by their quality and volume, and the performance of the 
analysis, affected by delays in accessing the data and availability of the data 
source. In this chapter, we present a Data Utility model used to assess the fitness 
of a data source with respect to its usage in a data intensive application running in 
a Fog environment. In this context, data are provided using a Data as a Service 
approach and, both data storage and data processing, can be placed in a cloud 
resource as well as in an edge device. The placement of a resource affects the 
quality of the service and the Data Utility as well. On this basis, the Data Utility 
model provides a support for making decisions on the deployment of data 
intensive applications according to the impact of the task location, and on the 
selection of proper data sources as input for the application according to the 
application requirements, taking into consideration that both tasks and data can be 
moved from the edge to the cloud, and vice versa, to improve the efficiency and 
the effectiveness of applications. 

Keywords: Data Quality, Data Utility, quality of service, Cloud Computing, 
Fog Computing, data lifecycle, Data as a Service 

1.1 Introduction 

 
Due to the huge amount of data that are continuously produced, more and more 
data intensive applications are required to properly manage these data. Indeed, 
data need to be stored, retrieved, processed, and provided in an efficient way. This 
means that the data intensive applications need to be scalable, reliable, widely 
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accessible, also considering possible privacy restrictions. 
Currently, several tools, focusing on different aspects have been proposed. For 
instance, HDFS [1] to provide a distributed file system, NoSQL databases [2] 
(e.g., MongoDB [3], Cassandra [4]) to ensure more flexibility and reliability, new 
programming models (e.g., MapReduce [5]), as well as new architectures (e.g., 
Lambda Architecture [6]) to improve the scalability.  
It is worth noticing that most of the approaches proposed so far goes in the 
direction of making the data processing more efficient. For this reason, most of the 
solutions are conceived to run on cloud resources as they provide an environment 
ensuring scalability, reliability, and security.  
Nevertheless, if we consider not only the data processing but the entire data 
management life-cycle, it is clear how cloud cannot be considered the only option. 
In fact, especially in IoT scenarios, data are produced on the edge (e.g., 
machineries, deployed sensors), then moved to the cloud where they are stored 
and processed and, finally, sent back to the same place where they are generated 
to, for instance, better configure the machinery that has been monitored, or to 
create reports used by the operators of those machines. This simple example 
highlights how data continuously move from the edge to the cloud and vice-versa 
and, due to the network infrastructure, a significant latency could be introduced.  
A reaction to this situation has been to leave the data processing to where the data 
are produced. This is the Edge Computing [7] and it works perfectly when the data 
processing does not require a significant amount of resources, as they need to 
leave only on the edge of the network. 
At the same time, Fog Computing has been arising as a platform able “to provide 
compute, storage, and networking services between cloud data centers and 
devices at the edge of the network” [8]. Similarly, as proposed by the OpenFog 
Architecture [9], we can consider Fog Computing as the sum of Cloud and Edge 
Computing where these two paradigms seamlessly interoperate [10]. 
In such a scenario, the approach proposed in this chapter relies on the Service 
Oriented Computing paradigm where data sets are exposed as Data as a Service 
(DaaS). This requires a proper description of the data to the final user where, in 
addition to the functional aspects, it includes the non-functional aspects 
concerning the location in which the data are stored, the format used, and the 
quality of such data. Since the user will base the decision of using or not this data 
source according to her/his needs, the more dimensions we put in the description 
the more the variable the user has to consider, thus the less usable will be the 
approach. For this reason, we introduce the notion of Data Utility, defined as the 
relevance of data for the usage context, where the context is defined in terms of 
the designer's goals and system characteristics. The developers’ requirements are 
expressed in terms of functional (e.g., the application need to extract the data 
about the exams of the patients performed in the last year) and non-functional 
(e.g., latency, data completeness) aspects as well as constraints (e.g., data must be 
stored encrypted). The model of Data Utility has been discussed in [11]. 
If, on the one hand, users can take advantage of this concise description, on the 
other hand a higher burden is left to the providers. Indeed, the heterogeneity of the 
devices living on the edge or on the cloud, the influence of the network, the 
inherent Data Utility of the data sources are dependent to each other, and the goal 
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of this chapter is to model such dependencies.  
The chapter is organized as follows. Sect. 1.2 gives an overview of the state of the 
art in this field. To better clarify the need and the usage of the Data Utility model, 
we use the running example introduced in Sect. 1.3. Sect. 1.4 discusses the 
conceptual model of data intensive applications running in a Fog environment. 
Sect. 1.5 introduces Data Utility and the concepts related to Data Utility definition 
and evaluation. Sect. 1.6 presents the lifecycle of the data sources and their Data 
Utility from the application developer and the data owner perspectives. Sect. 1.7 
discusses the implication of Data Utility during the application deployment. Sect. 
1.8 concludes the chapter outlining possible future directions. 
 

1.2 Related Work 

 
The concept of Data Utility has been used in several contexts. Various definitions 
have been provided in the literature. For the general IT context, Data Utility has 
been defined by [12] as “The relevance of a piece of information to the context it 
refers to and how much it differs from other similar pieces of information and 
contributes to reduce uncertainty”. The value of data has been also of interest in 
the business scenario, where Data Utility has been defined as “business value 
attributed to data within specific usage contexts” [13]. A more complex definition 
has been given by [14] for Data Utility in the statistics context: “A summary term 
describing the value of a given data release as an analytical resource. This 
comprises the data's analytical completeness and its analytical validity”. 
The common factor between all these definitions is that the utility of a data set 
cannot be considered independently from the context in which data are used. 
Defining the context is not trivial and several elements can be included in its 
definition. Moreover, the concept of context can change dynamically, including 
new elements that were not relevant before. For instance, the concept of Data 
Utility has been applied in its early stage in the information economics area. As 
discussed in [15], the economic factors which are considered relevant for the 
assessment of Data Utility are the predicted benefits and costs of: (i) the analysis 
of the dataset, (ii) using the results of the analysis, and (iii) building the algorithms 
for executing the analysis of the dataset. 
An important characteristic of the Data Utility concerns its variation with respect 
to the specific goal of the data analysis. As an example, in [16] Data Utility is 
analysed for data mining applications, while in [17] the focus is on users’ 
requirements. Moreover, Data Utility might be influenced by the quality of service 
and the quality of data. For instance, the relation between Data Utility and quality 
of service has been investigated in [18], which discusses Data Utility with a focus 
on energy efficiency of mobile devices in a mobile cloud oriented environment. 
The issue of energy efficiency for discovering interrelations between the 
evaluation of the data value and the effectiveness of run-time adaptation strategies 
has been discussed in [19]. Similarly, the influence of data quality on Data Utility 
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is considered in [20], where relevant quality dimensions (e.g., accuracy and 
completeness) are considered in relations with Data Utility. 
Finally, Data Utility has been also analysed with respect to the relation between IT 
and business, and this has paved the way for associating Data Utility to business 
processes. In this context, Data Utility is defined as a measurement of the gain 
obtained by using a dataset inside an organization [21]. Moreover, [22] discusses 
which are the information quality requirements in order to obtain reliable results 
from the execution of business processes.  
The aim of this chapter starts from the results available in the state of the art for 
providing a definition of Data Utility comprehensive of all the relevant aspects 
emerged by this analysis: the context in which data are used, the content of the 
data, and the execution environment. We also evaluate how different 
configurations in terms of resource and data placement can affect Data Utility by 
using the concept of data movement introduced in [23] as a strategy for improving 
Data Utility. 
 

1.3 Running Example 

 
Being Data Utility a context-dependent aspect, a proper discussion about it 
requires the definition of a running example. In particular, this chapter relies on a 
scenario related to smart buildings. In more detail, we consider a building in 
which each room is monitored with sensors which allow a computing 
infrastructure to collect information about humidity, brightness and temperature. 
Sensors store this information at the edge of the network and make it available to 
several applications which want to manage the smart building. Additional data 
sources can be provided as DaaS and integrated with the information collected by 
the sensors. As an example, weather data provided by external services can be 
used to support some analyses. 
In this running example, we focus on a specific data intensive application which 
uses as input all the illustrated data sources. The goal of the application is to 
analyse and improve the comfort in the building. To reach this goal, the 
application executes several tasks: 

● Task A - Ambient Sensing Alignment: this task collects data coming from 
the temperature, humidity, and brightness sensors located in the rooms of 
the monitored building. These data are pre-processed to prepare them for 
further analysis (e.g., timestamps alignment and data cleaning). 

● Task B - Ambient Sensing Aggregation: the pre-processed data obtained 
in the previous step are analysed to obtain some statistical information 
like maximum, minimum, and average value for each sensor. Also, data 
of similar sensors are compared to obtain a typical behaviour for each 
kind of sensor (e.g., average temperature in the rooms of the building). 
This statistical information is stored to be used in further steps of the 
application. 

● Task C - Data Enrichment and Prediction: this task performs predictions 
about the status of the rooms in the building by using the data generated 
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in the previous step integrated with external information about the 
weather of the zone or city in which the building is located. 

● Task D - Visualization Preparation: this task is in charge of presenting 
the results of the analysis performed in the previous tasks to the final user 
through visualization tools.  

The structure of the application and the data sources involved in the analyses 
performed by its tasks are shown in Fig. 1. Tasks are represented as boxes labelled 
with the name of the task. The order in which the tasks are executed is modelled 
as a flow, represented through arrows connecting the different tasks. Data sources 
(DS) are modelled as inputs for the tasks. Two data sources are depicted: sensors 
of the building (labelled as 𝐷𝑆#, where B stands for Building sensors) representing 
streaming data collected from sensors, and databases containing weather data, 
labelled in the figure as 𝐷𝑆%, where W stands for Weather data. It is worth 
noticing that the output of a task can be considered as an input for the following 
task. This input is depicted in the flow between task  𝑡' to task 𝑡( as 𝐸',(, i.e. the 
information flow between Task A and Task B is labelled as 𝐸*,#. In the figure, this 
exchange of information is depicted as a data object attached to the flow between 
two tasks with a dashed line and labelled as described.  

 
Fig. 1: Example of Data intensive application in ambient intelligence domain [11]. 

Other relevant information about the input of the tasks is related to the owner of 
the data source: data can be generated by sensors controlled by the application 
administrator (e.g., sensors in the building are the input of Task A, referred as 
𝐷𝑆#	) or by an external DaaS (e.g., weather data are the input of Task B, referred 
as 𝐷𝑆%	). Moreover, the location of the data source is another element which 
affects the application (e.g., sensor data might be stored in an edge resource or in a 
cloud storage).  
While for Task A only a specific data source can be selected, identified in the 
sensors of a specific building, in other cases alternative data sources might be 
associated with a task. This is the case of Task C, where the input is weather 
information which can be retrieved by different DaaS providers fitting the 
requirements of the application. In this context, selecting the data source that 
better fits the requirements might be not trivial. In fact, several variables influence 
the efficiency and effectiveness of the task. One variable is related to the relative 
location of the task and the data source. As an example, placing Task A at the edge 
of the network might improve the execution of the task reducing the amount of 
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data collected by the sensors in the building that need to travel from the edge to 
the cloud. Similarly, also Task B might be conveniently located in the edge. 
Another variable to consider is the type of resources available in the edge and in 
the cloud. In fact, computation in the edge is usually executed on devices with 
limited capabilities and performance, and this might have a negative impact on the 
application, creating a bottleneck. Finally, in case of alternative data sources, we 
might take into consideration that different data sources provide data with 
different quality of data (e.g., the different weather data sources could have 
different quality levels). The selection of a provider instead of another one 
eventually affects the quality of the analysis performed by the whole application. 
All the described variables might be considered during the deployment of the 
application, making the work of the application developer really hard. To support 
him/her in this job, Data Utility provides a complex metric reflecting to which 
extent a data source satisfies the requirements of an application. The introduction 
of Data Utility can reduce the effort of the application developer in the selection of 
the data sources and the tasks location. 
 

1.4 A model for data intensive applications in Fog 
environment 

 
Data intensive applications are applications whose main goal is to manage a 
significant amount of information. They can be therefore defined by the data that 
they receive as an input, the processing steps executed to get results from them, 
and where the data are initially stored as well as they are stored during the 
processing steps. According to this, data intensive applications are usually 
modelled as a data flow between several processing steps. In this context, it is 
important to capture the relation existing between the data and the tasks operating 
on them. In [24], this relation is represented through a UML profile. A more 
refined attempt of modelling data intensive applications is presented in [25], 
where they are modelled from different perspectives (from business to technical 
aspects).  
With respect to the existing work, a peculiar aspect of the approach discussed in 
this chapter relies on the adoption of the Fog Computing paradigm for designing 
and running the application. As a consequence, the model adopted to define a data 
intensive application mainly goes in the direction of specifying how Fog 
Computing may affect the design and the execution of this type of applications. 
Fog Computing gets advantage of the capabilities of cloud extending them 
towards the edge of the network. In this way, the computation and data storage can 
be moved nearer to the final user, improving response time and reducing latency. 
The tools supporting Fog Computing hide the complexity and heterogeneity of the 
environment and data intensive applications can consider cloud and edge devices 
as a continuum. From a designer standpoint, instead of specifying a precise 
deployment plan, it is more interesting to specify which are the characteristics that 
a node should, or must, have to run a task or to store data. At design time, 
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movement of data and tasks between devices in the cloud or in the edge can be 
enacted to improve the efficiency and effectiveness of applications during their 
execution.  
 
 

 
 

Fig. 2: Data intensive application model [11]. 

Based on these assumptions, and focusing only on the design standpoint that 
reflects the main goal of this chapter, we can model a data intensive application as 
composed of three main elements: resources, data sources, and tasks. Fig. 2 
reports some of the characteristics of these elements with an emphasis on the 
relationships among them using the UML notation for class diagrams. In the 
model, a data intensive application is represented as a composition of tasks and its 
related to resources and data sources. All these three main elements are described 
in details in the following paragraphs. 

1.4.1 Resource 

 
Resources are the nodes in which the application can be deployed and in which 
data can be stored. According to the Fog paradigm, resources can be placed either 
in the cloud or in the edge on heterogeneous devices, including Virtual Machines, 
sensors, laptops, and smart devices. The computational and storage capabilities of 
these nodes are of interest since they might affect the execution of the application 
and its performance. Knowing this information about a resource makes it possible 
to understand if it is suitable for hosting the application or the data consumed 
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during its execution. According to this, when describing a resource, we need to 
define the computational capabilities in terms of number and frequency of CPUs, 
and the storage capabilities in terms of both RAM and disk capacity. The 
exhaustive description of the hardware features of a node is not of interest in this 
chapter, but standard approaches as the DMTF-CIM [26] can be adopted. 
In Fig. 2 resources are classified in cloud and edge using the generalization 
notation of UML. In fact, this distinction is not only due to the location of the 
resource, but also to its features. First of all, one difference is related to the 
ownership of the resource. Usually, a cloud infrastructure is not managed by the 
application developer but belongs to an external entity which provides only a 
limited set of information about, for instance, the location and features of the 
resource itself. For instance, when deploying a VM on a cloud infrastructure, the 
cloud provider usually shares the information on the site in which the VM has 
been deployed but it is not possible to access any information on the specific 
physical machine hosting it. Yet, the application developer has no control on 
migration of the VM from one server to another since this decision is managed by 
the cloud provider. In the case of an edge resource, we assume that the application 
developer can use only resources that s/he owns. According to this, the developer 
has a full knowledge and control on these resources, and can reconfigure and 
adapt them during the execution. As an example, we assume that it is possible to 
adjust the sampling rate of a sensor for making it in line with the needs of the 
application.  
 

1.4.2 Data Source 

 
The second element of data intensive applications that we want to analyse is the 
data source. The data source indicates the input of the application, including all 
the data required for executing the analysis and the relevant information written 
during the execution. Adopting the Service Oriented Computing paradigm, data 
sources are exposed as DaaS, thus we model them accordingly.  
From a functional perspective, APIs can be used to define which are the type of 
data that the data source makes available [27], as well as information is related to 
how data can be accessed (i.e., endpoints). Being independent from a specific 
implementation, with APIs it is possible to abstract from specific resources, and 
this is an advantage when dealing with heterogeneous environments as in the case 
of Fog Computing. In this way, the movement of a data source does not affect 
how the tasks access the content of the data source. Due to the different nature of 
data sources available, also different interactions are possible. We distinguish 
between conventional interactions, where data are accessed through queries, and 
stream interactions, which better reflects sources as sensors and monitoring 
systems, where data are continuously produced and updated. 
A data source is stored in one of the resources described in the previous paragraph 
(either on the edge or the cloud), but it can be moved in other resources taking 
advantage of data movement in Fog environments. Following the approach in [24] 
data sources are classified in Internal Sources containing data that can be managed 
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by the application designer, and External Sources which are data provided by an 
external service. The former class includes also the data produced by the 
application during its execution and exchanged between its tasks, as well as data 
stored in edge and cloud devices but owned and/or managed by the application 
developer. In Fig. 1, examples of this kind of sources are the data produced by 
sensors (𝐷𝑆#	) and data exchanged among tasks (𝐸',(). External sources are 
managed externally from the application, as the weather data 𝐷𝑆% in the example.  
Finally, a data source is associated with the resources. With initial resource, we 
indicate the resource in which a data source is deployed at the moment of the Data 
Utility evaluation. With possible resources, we indicate the set of storage nodes 
satisfying functional constraints of the data source (e.g., storage size and file 
system) in which the data source can be moved.  
A data source described in this way can be associated with a Data Utility value 
expressing its relevance in a given context. Using the model for data intensive 
applications introduced in this paragraph, Data Utility characterizes the 
association between a task, using a data source as an input, and a data source 
providing the data. Extending classical data quality evaluation, Data Utility is a 
multidimensional evaluation including attributes like accuracy, reliability, 
timeliness, precision, completeness [28]. Data Utility is affected by the resources 
involved in the deployment for both hosting the tasks and storing the data sources, 
and their location.  
 

1.4.3 Task 

 
A data intensive application can be seen as a sequence of tasks, each one with 
inputs and outputs, each of them cooperating in the analysis of the data set for 
extracting the desired knowledge. As discussed in [25], a task is a unit of work 
with a duration in time and, in the context of data intensive applications, we can 
identify a specific set of tasks: e.g., data cleaning, data integration, compression, 
and encryption. Typical tasks are associated with typical algorithms, but can be 
personalized and integrated with custom scripts. A data flow model can be used to 
express how data are acquired, transformed, and returned by the tasks composing 
the data intensive application [29]. To represent the order in which tasks are 
executed, the flow of tasks is expressed using the next and previous attributes. 
Tasks are also associated with the data sources which contain their inputs and host 
their outputs. An output is always connected to a data source which is an internal 
source, since the data produced by the task are managed internally. On the 
contrary, an input can be stored both in an internal source (in case of data 
exchanged between tasks or data source managed by the application developer) or 
an external source (in case of a data source managed externally from the 
application). 
Tasks are deployed on computational resources available in the described Fog 
environment. Similarly, to the data sources, a task is associated with the resource 
in which it is initially deployed (initialResource) and with a list of computational 
resources which are able to host the task (possibleResources). 
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1.5 Data Utility in Fog Environments 

 
As discussed in Sect. 1.2, Data Utility has been defined in different ways in the 
literature. All these definitions agree on its dependency on the context in which 
data are used.  Therefore, the assessment of Data Utility is a complex issue since 
context can be composed of several elements and it usually changes over time. 
Moreover, Data Utility aims to provide an indication of the relevance of data for 
the usage context that is defined in terms of system characteristics and application 
designer's goals. Therefore, before to discuss Data Utility in details we present in 
the following the components of the usage context.  
 

1.5.1 Usage context 

 
As stated above, the usage context depends on the status of the system and the 
application designer requirements. According to the proposed model introduced in 
Sect. 1.4, Data Utility is defined as an association class among tasks and data 
sources.  
Starting from the available data sources, for each data source, it is important to 
know the data source schema (𝑆(), the initial resource (𝑖𝑟() on which it is currently 
deployed and the set of possible resources on which it could be deployed	(𝑃𝑅(). 
Thus, the set of all the available data sources DS can be represented as:  
 

𝐷𝑆	 = 	 {𝑑𝑠(} 	= 	 {< 𝑆(, 𝑖𝑟(, 𝑃𝑅( >} 
 
 
where 𝑑𝑠( is the single data source and each data source is defined by a data 
source schema 𝑆(, an initial resource 𝑖𝑟(, and a set of potential resources 𝑃𝑅(. 
Moving to the tasks that compose the data intensive application, each task should 
be described by the application developer in terms of:  

● a description of the operations performed by the task 𝐷' (e.g., 
aggregation, filtering, clustering, association);  

● the set of inputs and outputs 𝐼𝑁' and 𝑂𝑈𝑇';  
● the position of the task within the data flow in terms of the set of tasks 

that precede and follow (𝑃' and 𝑁');  
● the current resource 𝑖𝑟'on which the task is deployed and the resources on 

which it can be potentially deployed 𝑃𝑅( the analysed task in the data-
flow process. 

Formally, we assume that each task 𝑡' is defined by: 
 

𝑡'	 =	< 𝐷', 𝐼𝑁', 𝑂𝑈𝑇', 𝑃', 𝑁', 𝑖𝑟', 𝑃𝑅' > 
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It is worth noticing that, as also depicted in Sect. 1.3, tasks may gather inputs: 
1. from a specific data source (i.e., Task A); 
2. from a previous task (i.e., Task B); 
3. from a data source that should be selected from a set of candidate sources 

(i.e., Task C). 
We can see the first and the second case as situations in which the task relies on a 
single and known source. Conversely, the last case concerns the situation in which 
the application developer could need support in the selection of the sources.  
To better distinguish among these situations and to also consider that a task may 
have several inputs, we can model the k-th input of the i-th task (𝐼𝑁'>) as: 
 

𝐼𝑁'> =	< 𝐴'>, 𝐶𝐷𝑆'> > 
 
where, 𝐴'> is the set of the attributes of the data source required by the task (e.g., 
temperature, humidity), and 𝐶𝐷𝑆'> the set of candidate data sources from which 
data have to be extracted. Since candidate data sources are a subset of the data 
sources available according to the needs of the designer, we can say that 𝐶𝐷𝑆'> ⊆
𝐷𝑆. Such set can include both internal and external sources. If the cardinality of 
this set is more than one, it means that the designer would like to be supported in 
the identification of the most suitable source among the ones available. In this 
case, for triggering the selection procedure a Data Request 𝑅'> is created for 
capturing the application designer's goals, i.e., the elements that can affect the 
source selection. The Data Request 𝑅'> is composed of three elements: 
 

𝑅'> =	< 𝐼𝑁'>, 𝑓'>
∗, 𝑁𝐹'>∗ >	

 
where: 

● 𝐼𝑁'> is the input definition: a task may require several inputs. For each 
input the application designer has to specify the list of attributes that the 
task needs and the set of candidate data sources from which data have to 
be extracted;  

● 𝑓'>
∗is the list of functional requirements: the * indicates that it is an 

optional parameter used to express functional requirements. It can be 
seen as a predicate, composed of atoms linked by traditional logical 
operators (i.e., AND, OR), that allows the designers to specify 
restrictions over the allowed values in order to better drive the source 
selection (e.g., city= “Milan” AND Temp > 23); 

● 𝑁𝐹'>∗is the list of non-functional requirements: also optional, they 
contain requests related to Data Quality, QoS, and security aspects. Note 
that all the non-functional requirements can be expressed by the 
developers or automatically gathered considering the kind of task. 
Quality requirements include: 

○ Data quality requirements: they focus on the quality of the 
content provided by the source; 

○ QoS requirements: they focus on non-functional properties such 
as availability, latency or cost. Since the assessment of such 
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properties mainly depends on the resources on which the task or 
the data are deployed/stored, the evaluation whether QoS 
requirements are met has to consider the placement of the tasks 
and data sources. 

Each non-functional requirement is an expression with which the related 
constraint to a DQ or QoS dimension is specified (e.g., data source 
completeness > 0.9 or latency < 10 sec). 

 
Therefore, for example, if an application wants to analyse the data related to the 
temperature values collected in a specific room of the building in the month of 
August, the data request can be the following: 

- Date, time, temperature 
- Date BETWEEN 01/08/2017 AND 31/08/2017 
- latency < 60 sec AND accuracy >99% AND completeness >98% 

 
It is possible to enrich the request with additional non-functional constraints that 
can be derived by the type of task. For example, a task that performs data mining 
operations requires a high amount of data and high completeness. If the developer 
has not specified requirements on such dimensions, the system, by analysing the 
type of task, will add these constraints to improve the effectiveness of the source 
selection.   
 

1.5.2 Data Utility 

 
The fitness of a data source to the application developer’s requirements is 
expressed through the evaluation of the Data Utility. This evaluation is led by the 
request 𝑅'> provided by the users together with the characteristics of the data 
source and of the task that requests it. For each data source provided by a DaaS, 
the Data Utility evaluation is performed to assess which is, among the alternative 
sources, the one better fitting the application developer’s requirements. In 
particular, Data Utility evaluation has to take into account: 
the capability of the source to satisfy the functional requirements of the task: the 
degree with which the source contains the data requested by the application; 

● the capability of the source to satisfy non-functional requirements of the 
task: the degree with which the source is able to satisfy quality 
requirements; 

● the reputation of the source: the degree with which the source is 
trustworthy.   

 
More formally, we assume that the data sources are associated with a set of 
metadata that reveal the Potential Data Utility (PDU) that summarizes the 
capabilities of the data source and can be periodically evaluated independently of 
the context. The PDU is calculated looking at the data and the characteristics of 
the data source. It is derived from a Data Quality and a Reputation assessment. 
From a Data Quality perspective, it is important to highlight that errors, missing 
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data, or updated data might significantly affect the usage and potential benefits of 
data. The assessment of Data Quality dimensions may contribute to the 
understanding of the potential value of the data. The list of dimensions (e.g., 
accuracy, consistency, completeness, timeliness) and the assessment metrics 
depend on the type of data contained in the source. For example, in case of data 
collected from sensors precision and data stability constitute the two most relevant 
dimensions to take care of. Generally speaking, we assume that each source is 
associated with a set of Data Quality dimensions and related values. Besides the 
content, also the usage of the source is considered and defined as Reputation 
index. This index depends on the frequency with which the source has been 
successfully used and on the scope of data (e.g., generic or specific, be integrated 
with other sources, used with other sources). 
A data source has to be evaluated by considering the context that in our scenario is 
composed of a data intensive application and the available resources. QoS 
capabilities have to be evaluated by considering all the available options that the 
Fog environment offers. Thus, both tasks and data can be moved: (i) from edge to 
cloud, (ii) from cloud to edge, (iii) from edge to edge, and finally (iv) from cloud 
to cloud.  Variation of the placement of a task or a data source on a specific 
resource has surely an impact on the QoS: in fact, the computational cost for 
obtaining data and the latency changes on the basis of the chosen location. For 
instance, it is reasonable to assume that the ambient sensing alignment task can be 
more efficient if it is executed closer to the sensor data to be aligned. As we 
assume that both data and task can be moved, we calculate the QoS dimensions 
for each possible configuration defined in terms of task placement associating a 
task 𝑡' to the resource 𝑟E in which it is deployed (< 𝑡', 𝑟E >) and data placement 
associating a data source 𝑑𝑠( to the resource 𝑟F where it is stored (< 𝑑𝑠(, 𝑟F >). 
 Data Utility of a data source 𝑑𝑠( for a task 𝑡' is defined as: 
 

𝐷𝑈'E(F = 𝑓(< 𝑡', 𝑟E >, < 𝑑𝑠(, 𝑟F >) 
 
Both tasks and data sources, according to our data intensive application model, 
can be placed on different resources belonging to 𝑃𝑅' and 𝑃𝑅(. Data Utility 
depends also on the task placement (< 𝑡', 𝑟E >) and data sources placement (<
𝑑𝑠(, 𝑟F >) where 𝑟E 	 ∈ 	𝑃𝑅' and 𝑟F 	 ∈ 	𝑃𝑅(. 
In summary, as shown in Fig. 3, Data Utility can be assessed by considering three 
main aspects: Data Quality, Reputation, and Quality of Service. Each of them is 
evaluated by means of Dimensions, each one associated with different Metrics 
(more than one assessment function might be available for a single dimension). 
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Fig. 3: Model of the utility components [11]. 

 

1.6 Data Lifecycle 

 
As Data Utility evaluation is dynamic and change over time according to the 
variation in terms of its components (e.g., data quality, quality of service, and 
reputation), we can describe the lifecycle of a data source from two perspectives: 
the DaaS perspective and the application developer’s perspective. The former 
considers the data source in the traditional lifecycle phases: from the data source 
creation to the disposal. The latter considers the data source as an object to access 
and manipulate.  
Focusing on the DaaS perspective, the data lifecycle is represented in Fig. 4. 
Firstly, the data source, in order to be managed by the platform, has to be 
registered, and the registration requires the definition of metadata that describe the 
source and its contents. Once that the source is registered, the Potential Data 
Utility can be evaluated as all the elements independent from specific context in 
which data are used (e.g., accuracy, completeness, consistency) can be obtained. 
In this way, the source is enriched with PDU metadata that are one of the main 
drivers for the selection of data with respect the applications requests. After this 
phase, the source is available for use. Periodically, the PDU is re-evaluated and 
corresponding metadata are updated. All the criteria of the Data Utility are instead 
assessed when an application sends a request. Data Utility evaluation considers the 
different variants of the context on the basis of the location of the application and 
the data source. This means that, for each request, several Data Utility vectors are 
calculated and a ranking can be defined.  
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Fig. 4: Data Lifecycle from the DaaS perspective. 

 
Moving to the application developer’s perspective, the data lifecycle starts with 
the submission of the data request in which the application developer specifies the 
data sources, and the functional and non-functional requirements (see Fig. 5).  
Once the set of valid data sources is identified on the basis of the functional 
requirements, each source is enriched with the utility scores that are evaluated 
considering the application and data source status. On the basis of these data, the 
application developer makes the final decision and the selected data source is 
instantiated and bind to the application.  
 

 

1.7 Using the Data Utility Model 

 
 Given a task and a data source composing the data intensive application, the 
evaluation of the Data Utility considers all the possible configurations, in the edge 
or in the cloud, of both the data source and the task. At this stage, the Data Utility 
model returns an evaluation based on three main dimensions, i.e., Reputation, 
Data Quality, and QoS. Thus, a tool supporting the designer by adopting the 
proposed Data Utility model can show, for each task and each configuration, 
where more than a data source is available (e.g., Task C), and how these three 
dimensions vary (see Fig. 6)In case a ranking of the different alternatives is 
required, different methods for identifying the best data source are available. They 
range from a simple aggregation (e.g., average or weighted average) of the 

Fig. 5: Data lifecycle from an application perspective. 
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different dimensions to more advanced techniques for multiple-criteria decision 
analysis (i.e., MCDA methods). 
 
 

 
Fig. 6: Using Data Utility model to evaluate alternative data sources [11]. 

 
Although the proposed model provides a significant and useful tool for data 
intensive application designers to understand the impact of moving data and tasks 
with respect to the Data Utility, this evaluation focuses only on a task level 
analysis.  For this reason, we advocate the need of a global Data Utility model that 
is able to capture the Data Utility of the entire application based on the selection 
of the different sources. At this stage, the definition of a Global Data Utility 
measure, that is the utility of the results provided to the final user, is under 
investigation, and here we would like to outline which are the main elements to be 
considered. 
First of all, we want to highlight that an increasing number of tasks and possible 
data sources imply an exponential increasing of the Data Utility evaluations 
required. This increment can be mitigated by the number of constraints that the 
designer can put to the requests in terms of allowed data movements. For instance, 
Task A and source 𝐷𝑆# are only considered in the edge because of a constraint 
forbidding to move the data produced by the sensors. For simplification, we 
assume that each task can be moved in the edge only if its predecessor is already 
in the edge (otherwise moving it does not provide any advantage since 
communication is not improved). This is true for our example, but not generally 
true when several tasks use data produced by edge devices.  
To give an idea, referring to the example discussed in Sect. 1.3, the different 
possible configurations are summarized in Table 1, where only two Weather Data 
providers are considered: 𝐷𝑆%I and 𝐷𝑆%J. The table is horizontally divided in 
four sections, each one representing a possible task deployment configuration, 
where on the right all the combinations about data source selection and placement 
is considered.  
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Table 1: Deployment alternatives in a Fog Environment. 

 Task A Task B Task C Task D 𝐷𝑆#  𝐷𝑆%I 𝐷𝑆%J 

Depl. 1 Edge Edge Edge Edge Edge Edge -- 

Depl. 2 Edge Edge Edge Edge Edge Cloud -- 

Depl. 3 Edge Edge Edge Edge Edge -- Edge 

Depl. 4 Edge Edge Edge Edge Edge -- Cloud 

Depl. 5 Edge Edge Edge Cloud Edge Edge -- 

Depl. 6 Edge Edge Edge Cloud Edge Cloud -- 

Depl. 7 Edge Edge Edge Cloud Edge -- Edge 

Depl. 8 Edge Edge Edge Cloud Edge -- Cloud 

Depl. 9 Edge Edge Cloud Cloud Edge Edge -- 

Depl. 10 Edge Edge Cloud Cloud Edge Cloud -- 

Depl. 11 Edge Edge Cloud Cloud Edge -- Edge 

Depl. 12 Edge Edge Cloud Cloud Edge -- Cloud 

Depl. 13 Edge Cloud Cloud Cloud Edge Edge -- 

Depl. 14 Edge Cloud Cloud Cloud Edge Cloud -- 

Depl. 15 Edge Cloud Cloud Cloud Edge -- Edge 

Depl. 16 Edge Cloud Cloud Cloud Edge -- Cloud 

 
 A second aspect to be considered concerns the mutual influences between tasks, 
making the data source selection and movement a complex decision. Two factors 
should be considered in the global Data Utility computation: 

● The Data Utility of a task 𝑡' influences the Data Utility of a task 𝑡( with 𝑡' 
successor of 𝑡(.  It means that the selection of a data source for task 𝑡' has 
an effect on 𝑡( which uses the output provided by 𝑡', both directly and 
indirectly. In the example depicted in Fig. 1, selecting a data source 
𝐷𝑆%E optimizing the Data Utility for Task C impacts on the Data Utility 
of Task B in which different requirements could make a data source 
𝐷𝑆%F more convenient for the global Data Utility. On the computation 
movement perspective, this dependency is also relevant. As an example, 
moving Task B to the edge may improve its the Data Utility by allowing 
a faster access to its input (generated by Task A), but affects the 
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performance of Task C for which a higher latency in data retrieval must 
be considered. 

● The Data Utility of a task 𝑡( influences the Data Utility of a task 𝑡' with 𝑡' 
predecessor of 𝑡(. Maximizing the Data Utility means selecting the best 
coupling between a task and a data source according to the task 
requirements, while maximizing each components of the Data Utility 
model. As an example, focusing on source selection, if both 𝐷𝑆%E and 
𝐷𝑆%F satisfy the task requirements, 𝐷𝑆%E could be selected because of a 
better timeliness if compared with 𝐷𝑆%F. However, 𝑡( requirements 
could be violated by 𝐷𝑆%E, and in this case 𝐷𝑆%F would be preferable. 

Finally, providing techniques and heuristics for selecting the deployment 
configuration maximizing the global Data Utility for the user of the application is 
out of scope, but is an interesting challenge that might be considered in the future. 
 

1.8 Concluding Remarks 

 
Nowadays, the amount of available data sources is continuously increasing. This 
is mainly due to the fact that new technologies and applications allow us to 
transform many aspects of our life into digital data. Data intensive applications 
analyse such data in order to understand them and support decision making 
processes, the design of advanced services, or the optimization of existing 
processes.  
However, having a high quantity of accessible data sources is not always an 
advantage for the application developers. In fact, they may experience some 
difficulties in selecting the appropriate source for their goals. For this reason, in 
this chapter we have introduced the Data Utility concept that is able to evaluate 
the relevance of a data source along the usage context. The context is defined in 
terms of both the developers’ requirements and the status of the system in which 
data sources and applications are stored and deployed. In particular, we define our 
approach by considering data intensive applications running on a Fog 
environment. In such scenario, the location of both tasks and data sources can be 
changed by using cloud or edge resources; therefore, the influence of data and 
computation movement is also considered in the Data Utility definition. Currently, 
the presented contribution supports the Data Utility driven selection of the data 
sources at the task level. However, the evaluation of the optimal utility for an 
application as a whole is under investigation to consider the influences among 
tasks, as well as the constraints over the deployment. 
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