
1

Chapter 1:
A Data Utility Model for Data Intensive
Applications in Fog Environments

Cinzia Cappiello, Pierluigi Plebani, Monica Vitali

Politecnico di Milano – Dipartimento di Elettronica ed Informazione
Piazza Leonardo da Vinci 32, 20133 Milano, Italy

Abstract: Sensors, smart devices, and wearables have been widely adopted in
recent years, bringing to the production of a big amount of data which can be
shared between several applications using these data as input for their analysis.
Data intensive applications can get advantage of these data only if they are reliable
and if they fit the requirements of the application. Designing data intensive
applications requires a trade-off between the value obtained by the analysis of the
data, which is affected by their quality and volume, and the performance of the
analysis, affected by delays in accessing the data and availability of the data
source. In this chapter, we present a Data Utility model used to assess the fitness
of a data source with respect to its usage in a data intensive application running in
a Fog environment. In this context, data are provided using a Data as a Service
approach and, both data storage and data processing, can be placed in a cloud
resource as well as in an edge device. The placement of a resource affects the
quality of the service and the Data Utility as well. On this basis, the Data Utility
model provides a support for making decisions on the deployment of data
intensive applications according to the impact of the task location, and on the
selection of proper data sources as input for the application according to the
application requirements, taking into consideration that both tasks and data can be
moved from the edge to the cloud, and vice versa, to improve the efficiency and
the effectiveness of applications.

Keywords: Data Quality, Data Utility, quality of service, Cloud Computing,
Fog Computing, data lifecycle, Data as a Service

1.1 Introduction

Due to the huge amount of data that are continuously produced, more and more
data intensive applications are required to properly manage these data. Indeed,
data need to be stored, retrieved, processed, and provided in an efficient way. This
means that the data intensive applications need to be scalable, reliable, widely

2

accessible, also considering possible privacy restrictions.
Currently, several tools, focusing on different aspects have been proposed. For
instance, HDFS [1] to provide a distributed file system, NoSQL databases [2]
(e.g., MongoDB [3], Cassandra [4]) to ensure more flexibility and reliability, new
programming models (e.g., MapReduce [5]), as well as new architectures (e.g.,
Lambda Architecture [6]) to improve the scalability.
It is worth noticing that most of the approaches proposed so far goes in the
direction of making the data processing more efficient. For this reason, most of the
solutions are conceived to run on cloud resources as they provide an environment
ensuring scalability, reliability, and security.
Nevertheless, if we consider not only the data processing but the entire data
management life-cycle, it is clear how cloud cannot be considered the only option.
In fact, especially in IoT scenarios, data are produced on the edge (e.g.,
machineries, deployed sensors), then moved to the cloud where they are stored
and processed and, finally, sent back to the same place where they are generated
to, for instance, better configure the machinery that has been monitored, or to
create reports used by the operators of those machines. This simple example
highlights how data continuously move from the edge to the cloud and vice-versa
and, due to the network infrastructure, a significant latency could be introduced.
A reaction to this situation has been to leave the data processing to where the data
are produced. This is the Edge Computing [7] and it works perfectly when the data
processing does not require a significant amount of resources, as they need to
leave only on the edge of the network.
At the same time, Fog Computing has been arising as a platform able “to provide
compute, storage, and networking services between cloud data centers and
devices at the edge of the network” [8]. Similarly, as proposed by the OpenFog
Architecture [9], we can consider Fog Computing as the sum of Cloud and Edge
Computing where these two paradigms seamlessly interoperate [10].
In such a scenario, the approach proposed in this chapter relies on the Service
Oriented Computing paradigm where data sets are exposed as Data as a Service
(DaaS). This requires a proper description of the data to the final user where, in
addition to the functional aspects, it includes the non-functional aspects
concerning the location in which the data are stored, the format used, and the
quality of such data. Since the user will base the decision of using or not this data
source according to her/his needs, the more dimensions we put in the description
the more the variable the user has to consider, thus the less usable will be the
approach. For this reason, we introduce the notion of Data Utility, defined as the
relevance of data for the usage context, where the context is defined in terms of
the designer's goals and system characteristics. The developers’ requirements are
expressed in terms of functional (e.g., the application need to extract the data
about the exams of the patients performed in the last year) and non-functional
(e.g., latency, data completeness) aspects as well as constraints (e.g., data must be
stored encrypted). The model of Data Utility has been discussed in [11].
If, on the one hand, users can take advantage of this concise description, on the
other hand a higher burden is left to the providers. Indeed, the heterogeneity of the
devices living on the edge or on the cloud, the influence of the network, the
inherent Data Utility of the data sources are dependent to each other, and the goal

3

of this chapter is to model such dependencies.
The chapter is organized as follows. Sect. 1.2 gives an overview of the state of the
art in this field. To better clarify the need and the usage of the Data Utility model,
we use the running example introduced in Sect. 1.3. Sect. 1.4 discusses the
conceptual model of data intensive applications running in a Fog environment.
Sect. 1.5 introduces Data Utility and the concepts related to Data Utility definition
and evaluation. Sect. 1.6 presents the lifecycle of the data sources and their Data
Utility from the application developer and the data owner perspectives. Sect. 1.7
discusses the implication of Data Utility during the application deployment. Sect.
1.8 concludes the chapter outlining possible future directions.

1.2 Related Work

The concept of Data Utility has been used in several contexts. Various definitions
have been provided in the literature. For the general IT context, Data Utility has
been defined by [12] as “The relevance of a piece of information to the context it
refers to and how much it differs from other similar pieces of information and
contributes to reduce uncertainty”. The value of data has been also of interest in
the business scenario, where Data Utility has been defined as “business value
attributed to data within specific usage contexts” [13]. A more complex definition
has been given by [14] for Data Utility in the statistics context: “A summary term
describing the value of a given data release as an analytical resource. This
comprises the data's analytical completeness and its analytical validity”.
The common factor between all these definitions is that the utility of a data set
cannot be considered independently from the context in which data are used.
Defining the context is not trivial and several elements can be included in its
definition. Moreover, the concept of context can change dynamically, including
new elements that were not relevant before. For instance, the concept of Data
Utility has been applied in its early stage in the information economics area. As
discussed in [15], the economic factors which are considered relevant for the
assessment of Data Utility are the predicted benefits and costs of: (i) the analysis
of the dataset, (ii) using the results of the analysis, and (iii) building the algorithms
for executing the analysis of the dataset.
An important characteristic of the Data Utility concerns its variation with respect
to the specific goal of the data analysis. As an example, in [16] Data Utility is
analysed for data mining applications, while in [17] the focus is on users’
requirements. Moreover, Data Utility might be influenced by the quality of service
and the quality of data. For instance, the relation between Data Utility and quality
of service has been investigated in [18], which discusses Data Utility with a focus
on energy efficiency of mobile devices in a mobile cloud oriented environment.
The issue of energy efficiency for discovering interrelations between the
evaluation of the data value and the effectiveness of run-time adaptation strategies
has been discussed in [19]. Similarly, the influence of data quality on Data Utility

4

is considered in [20], where relevant quality dimensions (e.g., accuracy and
completeness) are considered in relations with Data Utility.
Finally, Data Utility has been also analysed with respect to the relation between IT
and business, and this has paved the way for associating Data Utility to business
processes. In this context, Data Utility is defined as a measurement of the gain
obtained by using a dataset inside an organization [21]. Moreover, [22] discusses
which are the information quality requirements in order to obtain reliable results
from the execution of business processes.
The aim of this chapter starts from the results available in the state of the art for
providing a definition of Data Utility comprehensive of all the relevant aspects
emerged by this analysis: the context in which data are used, the content of the
data, and the execution environment. We also evaluate how different
configurations in terms of resource and data placement can affect Data Utility by
using the concept of data movement introduced in [23] as a strategy for improving
Data Utility.

1.3 Running Example

Being Data Utility a context-dependent aspect, a proper discussion about it
requires the definition of a running example. In particular, this chapter relies on a
scenario related to smart buildings. In more detail, we consider a building in
which each room is monitored with sensors which allow a computing
infrastructure to collect information about humidity, brightness and temperature.
Sensors store this information at the edge of the network and make it available to
several applications which want to manage the smart building. Additional data
sources can be provided as DaaS and integrated with the information collected by
the sensors. As an example, weather data provided by external services can be
used to support some analyses.
In this running example, we focus on a specific data intensive application which
uses as input all the illustrated data sources. The goal of the application is to
analyse and improve the comfort in the building. To reach this goal, the
application executes several tasks:

● Task A - Ambient Sensing Alignment: this task collects data coming from
the temperature, humidity, and brightness sensors located in the rooms of
the monitored building. These data are pre-processed to prepare them for
further analysis (e.g., timestamps alignment and data cleaning).

● Task B - Ambient Sensing Aggregation: the pre-processed data obtained
in the previous step are analysed to obtain some statistical information
like maximum, minimum, and average value for each sensor. Also, data
of similar sensors are compared to obtain a typical behaviour for each
kind of sensor (e.g., average temperature in the rooms of the building).
This statistical information is stored to be used in further steps of the
application.

● Task C - Data Enrichment and Prediction: this task performs predictions
about the status of the rooms in the building by using the data generated

5

in the previous step integrated with external information about the
weather of the zone or city in which the building is located.

● Task D - Visualization Preparation: this task is in charge of presenting
the results of the analysis performed in the previous tasks to the final user
through visualization tools.

The structure of the application and the data sources involved in the analyses
performed by its tasks are shown in Fig. 1. Tasks are represented as boxes labelled
with the name of the task. The order in which the tasks are executed is modelled
as a flow, represented through arrows connecting the different tasks. Data sources
(DS) are modelled as inputs for the tasks. Two data sources are depicted: sensors
of the building (labelled as 𝐷𝑆#, where B stands for Building sensors) representing
streaming data collected from sensors, and databases containing weather data,
labelled in the figure as 𝐷𝑆%, where W stands for Weather data. It is worth
noticing that the output of a task can be considered as an input for the following
task. This input is depicted in the flow between task 𝑡' to task 𝑡(as 𝐸',(, i.e. the
information flow between Task A and Task B is labelled as 𝐸*,#. In the figure, this
exchange of information is depicted as a data object attached to the flow between
two tasks with a dashed line and labelled as described.

Fig. 1: Example of Data intensive application in ambient intelligence domain [11].

Other relevant information about the input of the tasks is related to the owner of
the data source: data can be generated by sensors controlled by the application
administrator (e.g., sensors in the building are the input of Task A, referred as
𝐷𝑆#) or by an external DaaS (e.g., weather data are the input of Task B, referred
as 𝐷𝑆%). Moreover, the location of the data source is another element which
affects the application (e.g., sensor data might be stored in an edge resource or in a
cloud storage).
While for Task A only a specific data source can be selected, identified in the
sensors of a specific building, in other cases alternative data sources might be
associated with a task. This is the case of Task C, where the input is weather
information which can be retrieved by different DaaS providers fitting the
requirements of the application. In this context, selecting the data source that
better fits the requirements might be not trivial. In fact, several variables influence
the efficiency and effectiveness of the task. One variable is related to the relative
location of the task and the data source. As an example, placing Task A at the edge
of the network might improve the execution of the task reducing the amount of

6

data collected by the sensors in the building that need to travel from the edge to
the cloud. Similarly, also Task B might be conveniently located in the edge.
Another variable to consider is the type of resources available in the edge and in
the cloud. In fact, computation in the edge is usually executed on devices with
limited capabilities and performance, and this might have a negative impact on the
application, creating a bottleneck. Finally, in case of alternative data sources, we
might take into consideration that different data sources provide data with
different quality of data (e.g., the different weather data sources could have
different quality levels). The selection of a provider instead of another one
eventually affects the quality of the analysis performed by the whole application.
All the described variables might be considered during the deployment of the
application, making the work of the application developer really hard. To support
him/her in this job, Data Utility provides a complex metric reflecting to which
extent a data source satisfies the requirements of an application. The introduction
of Data Utility can reduce the effort of the application developer in the selection of
the data sources and the tasks location.

1.4 A model for data intensive applications in Fog
environment

Data intensive applications are applications whose main goal is to manage a
significant amount of information. They can be therefore defined by the data that
they receive as an input, the processing steps executed to get results from them,
and where the data are initially stored as well as they are stored during the
processing steps. According to this, data intensive applications are usually
modelled as a data flow between several processing steps. In this context, it is
important to capture the relation existing between the data and the tasks operating
on them. In [24], this relation is represented through a UML profile. A more
refined attempt of modelling data intensive applications is presented in [25],
where they are modelled from different perspectives (from business to technical
aspects).
With respect to the existing work, a peculiar aspect of the approach discussed in
this chapter relies on the adoption of the Fog Computing paradigm for designing
and running the application. As a consequence, the model adopted to define a data
intensive application mainly goes in the direction of specifying how Fog
Computing may affect the design and the execution of this type of applications.
Fog Computing gets advantage of the capabilities of cloud extending them
towards the edge of the network. In this way, the computation and data storage can
be moved nearer to the final user, improving response time and reducing latency.
The tools supporting Fog Computing hide the complexity and heterogeneity of the
environment and data intensive applications can consider cloud and edge devices
as a continuum. From a designer standpoint, instead of specifying a precise
deployment plan, it is more interesting to specify which are the characteristics that
a node should, or must, have to run a task or to store data. At design time,

7

movement of data and tasks between devices in the cloud or in the edge can be
enacted to improve the efficiency and effectiveness of applications during their
execution.

Fig. 2: Data intensive application model [11].

Based on these assumptions, and focusing only on the design standpoint that
reflects the main goal of this chapter, we can model a data intensive application as
composed of three main elements: resources, data sources, and tasks. Fig. 2
reports some of the characteristics of these elements with an emphasis on the
relationships among them using the UML notation for class diagrams. In the
model, a data intensive application is represented as a composition of tasks and its
related to resources and data sources. All these three main elements are described
in details in the following paragraphs.

1.4.1 Resource

Resources are the nodes in which the application can be deployed and in which
data can be stored. According to the Fog paradigm, resources can be placed either
in the cloud or in the edge on heterogeneous devices, including Virtual Machines,
sensors, laptops, and smart devices. The computational and storage capabilities of
these nodes are of interest since they might affect the execution of the application
and its performance. Knowing this information about a resource makes it possible
to understand if it is suitable for hosting the application or the data consumed

8

during its execution. According to this, when describing a resource, we need to
define the computational capabilities in terms of number and frequency of CPUs,
and the storage capabilities in terms of both RAM and disk capacity. The
exhaustive description of the hardware features of a node is not of interest in this
chapter, but standard approaches as the DMTF-CIM [26] can be adopted.
In Fig. 2 resources are classified in cloud and edge using the generalization
notation of UML. In fact, this distinction is not only due to the location of the
resource, but also to its features. First of all, one difference is related to the
ownership of the resource. Usually, a cloud infrastructure is not managed by the
application developer but belongs to an external entity which provides only a
limited set of information about, for instance, the location and features of the
resource itself. For instance, when deploying a VM on a cloud infrastructure, the
cloud provider usually shares the information on the site in which the VM has
been deployed but it is not possible to access any information on the specific
physical machine hosting it. Yet, the application developer has no control on
migration of the VM from one server to another since this decision is managed by
the cloud provider. In the case of an edge resource, we assume that the application
developer can use only resources that s/he owns. According to this, the developer
has a full knowledge and control on these resources, and can reconfigure and
adapt them during the execution. As an example, we assume that it is possible to
adjust the sampling rate of a sensor for making it in line with the needs of the
application.

1.4.2 Data Source

The second element of data intensive applications that we want to analyse is the
data source. The data source indicates the input of the application, including all
the data required for executing the analysis and the relevant information written
during the execution. Adopting the Service Oriented Computing paradigm, data
sources are exposed as DaaS, thus we model them accordingly.
From a functional perspective, APIs can be used to define which are the type of
data that the data source makes available [27], as well as information is related to
how data can be accessed (i.e., endpoints). Being independent from a specific
implementation, with APIs it is possible to abstract from specific resources, and
this is an advantage when dealing with heterogeneous environments as in the case
of Fog Computing. In this way, the movement of a data source does not affect
how the tasks access the content of the data source. Due to the different nature of
data sources available, also different interactions are possible. We distinguish
between conventional interactions, where data are accessed through queries, and
stream interactions, which better reflects sources as sensors and monitoring
systems, where data are continuously produced and updated.
A data source is stored in one of the resources described in the previous paragraph
(either on the edge or the cloud), but it can be moved in other resources taking
advantage of data movement in Fog environments. Following the approach in [24]
data sources are classified in Internal Sources containing data that can be managed

9

by the application designer, and External Sources which are data provided by an
external service. The former class includes also the data produced by the
application during its execution and exchanged between its tasks, as well as data
stored in edge and cloud devices but owned and/or managed by the application
developer. In Fig. 1, examples of this kind of sources are the data produced by
sensors (𝐷𝑆#) and data exchanged among tasks (𝐸',(). External sources are
managed externally from the application, as the weather data 𝐷𝑆% in the example.
Finally, a data source is associated with the resources. With initial resource, we
indicate the resource in which a data source is deployed at the moment of the Data
Utility evaluation. With possible resources, we indicate the set of storage nodes
satisfying functional constraints of the data source (e.g., storage size and file
system) in which the data source can be moved.
A data source described in this way can be associated with a Data Utility value
expressing its relevance in a given context. Using the model for data intensive
applications introduced in this paragraph, Data Utility characterizes the
association between a task, using a data source as an input, and a data source
providing the data. Extending classical data quality evaluation, Data Utility is a
multidimensional evaluation including attributes like accuracy, reliability,
timeliness, precision, completeness [28]. Data Utility is affected by the resources
involved in the deployment for both hosting the tasks and storing the data sources,
and their location.

1.4.3 Task

A data intensive application can be seen as a sequence of tasks, each one with
inputs and outputs, each of them cooperating in the analysis of the data set for
extracting the desired knowledge. As discussed in [25], a task is a unit of work
with a duration in time and, in the context of data intensive applications, we can
identify a specific set of tasks: e.g., data cleaning, data integration, compression,
and encryption. Typical tasks are associated with typical algorithms, but can be
personalized and integrated with custom scripts. A data flow model can be used to
express how data are acquired, transformed, and returned by the tasks composing
the data intensive application [29]. To represent the order in which tasks are
executed, the flow of tasks is expressed using the next and previous attributes.
Tasks are also associated with the data sources which contain their inputs and host
their outputs. An output is always connected to a data source which is an internal
source, since the data produced by the task are managed internally. On the
contrary, an input can be stored both in an internal source (in case of data
exchanged between tasks or data source managed by the application developer) or
an external source (in case of a data source managed externally from the
application).
Tasks are deployed on computational resources available in the described Fog
environment. Similarly, to the data sources, a task is associated with the resource
in which it is initially deployed (initialResource) and with a list of computational
resources which are able to host the task (possibleResources).

10

1.5 Data Utility in Fog Environments

As discussed in Sect. 1.2, Data Utility has been defined in different ways in the
literature. All these definitions agree on its dependency on the context in which
data are used. Therefore, the assessment of Data Utility is a complex issue since
context can be composed of several elements and it usually changes over time.
Moreover, Data Utility aims to provide an indication of the relevance of data for
the usage context that is defined in terms of system characteristics and application
designer's goals. Therefore, before to discuss Data Utility in details we present in
the following the components of the usage context.

1.5.1 Usage context

As stated above, the usage context depends on the status of the system and the
application designer requirements. According to the proposed model introduced in
Sect. 1.4, Data Utility is defined as an association class among tasks and data
sources.
Starting from the available data sources, for each data source, it is important to
know the data source schema (𝑆(), the initial resource (𝑖𝑟() on which it is currently
deployed and the set of possible resources on which it could be deployed	(𝑃𝑅().
Thus, the set of all the available data sources DS can be represented as:

𝐷𝑆	 = 	 {𝑑𝑠(} 	= 	 {< 𝑆(, 𝑖𝑟(, 𝑃𝑅(>}

where 𝑑𝑠(is the single data source and each data source is defined by a data
source schema 𝑆(, an initial resource 𝑖𝑟(, and a set of potential resources 𝑃𝑅(.
Moving to the tasks that compose the data intensive application, each task should
be described by the application developer in terms of:

● a description of the operations performed by the task 𝐷' (e.g.,
aggregation, filtering, clustering, association);

● the set of inputs and outputs 𝐼𝑁' and 𝑂𝑈𝑇';
● the position of the task within the data flow in terms of the set of tasks

that precede and follow (𝑃' and 𝑁');
● the current resource 𝑖𝑟'on which the task is deployed and the resources on

which it can be potentially deployed 𝑃𝑅(the analysed task in the data-
flow process.

Formally, we assume that each task 𝑡' is defined by:

𝑡'	 =	< 𝐷', 𝐼𝑁', 𝑂𝑈𝑇', 𝑃', 𝑁', 𝑖𝑟', 𝑃𝑅' >

11

It is worth noticing that, as also depicted in Sect. 1.3, tasks may gather inputs:
1. from a specific data source (i.e., Task A);
2. from a previous task (i.e., Task B);
3. from a data source that should be selected from a set of candidate sources

(i.e., Task C).
We can see the first and the second case as situations in which the task relies on a
single and known source. Conversely, the last case concerns the situation in which
the application developer could need support in the selection of the sources.
To better distinguish among these situations and to also consider that a task may
have several inputs, we can model the k-th input of the i-th task (𝐼𝑁'>) as:

𝐼𝑁'> =	< 𝐴'>, 𝐶𝐷𝑆'> >

where, 𝐴'> is the set of the attributes of the data source required by the task (e.g.,
temperature, humidity), and 𝐶𝐷𝑆'> the set of candidate data sources from which
data have to be extracted. Since candidate data sources are a subset of the data
sources available according to the needs of the designer, we can say that 𝐶𝐷𝑆'> ⊆
𝐷𝑆. Such set can include both internal and external sources. If the cardinality of
this set is more than one, it means that the designer would like to be supported in
the identification of the most suitable source among the ones available. In this
case, for triggering the selection procedure a Data Request 𝑅'> is created for
capturing the application designer's goals, i.e., the elements that can affect the
source selection. The Data Request 𝑅'> is composed of three elements:

𝑅'> =	< 𝐼𝑁'>, 𝑓'>
∗, 𝑁𝐹'>∗ >	

where:

● 𝐼𝑁'> is the input definition: a task may require several inputs. For each
input the application designer has to specify the list of attributes that the
task needs and the set of candidate data sources from which data have to
be extracted;

● 𝑓'>
∗is the list of functional requirements: the * indicates that it is an

optional parameter used to express functional requirements. It can be
seen as a predicate, composed of atoms linked by traditional logical
operators (i.e., AND, OR), that allows the designers to specify
restrictions over the allowed values in order to better drive the source
selection (e.g., city= “Milan” AND Temp > 23);

● 𝑁𝐹'>∗is the list of non-functional requirements: also optional, they
contain requests related to Data Quality, QoS, and security aspects. Note
that all the non-functional requirements can be expressed by the
developers or automatically gathered considering the kind of task.
Quality requirements include:

○ Data quality requirements: they focus on the quality of the
content provided by the source;

○ QoS requirements: they focus on non-functional properties such
as availability, latency or cost. Since the assessment of such

12

properties mainly depends on the resources on which the task or
the data are deployed/stored, the evaluation whether QoS
requirements are met has to consider the placement of the tasks
and data sources.

Each non-functional requirement is an expression with which the related
constraint to a DQ or QoS dimension is specified (e.g., data source
completeness > 0.9 or latency < 10 sec).

Therefore, for example, if an application wants to analyse the data related to the
temperature values collected in a specific room of the building in the month of
August, the data request can be the following:

- Date, time, temperature
- Date BETWEEN 01/08/2017 AND 31/08/2017
- latency < 60 sec AND accuracy >99% AND completeness >98%

It is possible to enrich the request with additional non-functional constraints that
can be derived by the type of task. For example, a task that performs data mining
operations requires a high amount of data and high completeness. If the developer
has not specified requirements on such dimensions, the system, by analysing the
type of task, will add these constraints to improve the effectiveness of the source
selection.

1.5.2 Data Utility

The fitness of a data source to the application developer’s requirements is
expressed through the evaluation of the Data Utility. This evaluation is led by the
request 𝑅'> provided by the users together with the characteristics of the data
source and of the task that requests it. For each data source provided by a DaaS,
the Data Utility evaluation is performed to assess which is, among the alternative
sources, the one better fitting the application developer’s requirements. In
particular, Data Utility evaluation has to take into account:
the capability of the source to satisfy the functional requirements of the task: the
degree with which the source contains the data requested by the application;

● the capability of the source to satisfy non-functional requirements of the
task: the degree with which the source is able to satisfy quality
requirements;

● the reputation of the source: the degree with which the source is
trustworthy.

More formally, we assume that the data sources are associated with a set of
metadata that reveal the Potential Data Utility (PDU) that summarizes the
capabilities of the data source and can be periodically evaluated independently of
the context. The PDU is calculated looking at the data and the characteristics of
the data source. It is derived from a Data Quality and a Reputation assessment.
From a Data Quality perspective, it is important to highlight that errors, missing

13

data, or updated data might significantly affect the usage and potential benefits of
data. The assessment of Data Quality dimensions may contribute to the
understanding of the potential value of the data. The list of dimensions (e.g.,
accuracy, consistency, completeness, timeliness) and the assessment metrics
depend on the type of data contained in the source. For example, in case of data
collected from sensors precision and data stability constitute the two most relevant
dimensions to take care of. Generally speaking, we assume that each source is
associated with a set of Data Quality dimensions and related values. Besides the
content, also the usage of the source is considered and defined as Reputation
index. This index depends on the frequency with which the source has been
successfully used and on the scope of data (e.g., generic or specific, be integrated
with other sources, used with other sources).
A data source has to be evaluated by considering the context that in our scenario is
composed of a data intensive application and the available resources. QoS
capabilities have to be evaluated by considering all the available options that the
Fog environment offers. Thus, both tasks and data can be moved: (i) from edge to
cloud, (ii) from cloud to edge, (iii) from edge to edge, and finally (iv) from cloud
to cloud. Variation of the placement of a task or a data source on a specific
resource has surely an impact on the QoS: in fact, the computational cost for
obtaining data and the latency changes on the basis of the chosen location. For
instance, it is reasonable to assume that the ambient sensing alignment task can be
more efficient if it is executed closer to the sensor data to be aligned. As we
assume that both data and task can be moved, we calculate the QoS dimensions
for each possible configuration defined in terms of task placement associating a
task 𝑡' to the resource 𝑟E in which it is deployed (< 𝑡', 𝑟E >) and data placement
associating a data source 𝑑𝑠(to the resource 𝑟F where it is stored (< 𝑑𝑠(, 𝑟F >).
 Data Utility of a data source 𝑑𝑠(for a task 𝑡' is defined as:

𝐷𝑈'E(F = 𝑓(< 𝑡', 𝑟E >, < 𝑑𝑠(, 𝑟F >)

Both tasks and data sources, according to our data intensive application model,
can be placed on different resources belonging to 𝑃𝑅' and 𝑃𝑅(. Data Utility
depends also on the task placement (< 𝑡', 𝑟E >) and data sources placement (<
𝑑𝑠(, 𝑟F >) where 𝑟E 	 ∈ 	𝑃𝑅' and 𝑟F 	 ∈ 	𝑃𝑅(.
In summary, as shown in Fig. 3, Data Utility can be assessed by considering three
main aspects: Data Quality, Reputation, and Quality of Service. Each of them is
evaluated by means of Dimensions, each one associated with different Metrics
(more than one assessment function might be available for a single dimension).

14

Fig. 3: Model of the utility components [11].

1.6 Data Lifecycle

As Data Utility evaluation is dynamic and change over time according to the
variation in terms of its components (e.g., data quality, quality of service, and
reputation), we can describe the lifecycle of a data source from two perspectives:
the DaaS perspective and the application developer’s perspective. The former
considers the data source in the traditional lifecycle phases: from the data source
creation to the disposal. The latter considers the data source as an object to access
and manipulate.
Focusing on the DaaS perspective, the data lifecycle is represented in Fig. 4.
Firstly, the data source, in order to be managed by the platform, has to be
registered, and the registration requires the definition of metadata that describe the
source and its contents. Once that the source is registered, the Potential Data
Utility can be evaluated as all the elements independent from specific context in
which data are used (e.g., accuracy, completeness, consistency) can be obtained.
In this way, the source is enriched with PDU metadata that are one of the main
drivers for the selection of data with respect the applications requests. After this
phase, the source is available for use. Periodically, the PDU is re-evaluated and
corresponding metadata are updated. All the criteria of the Data Utility are instead
assessed when an application sends a request. Data Utility evaluation considers the
different variants of the context on the basis of the location of the application and
the data source. This means that, for each request, several Data Utility vectors are
calculated and a ranking can be defined.

15

Fig. 4: Data Lifecycle from the DaaS perspective.

Moving to the application developer’s perspective, the data lifecycle starts with
the submission of the data request in which the application developer specifies the
data sources, and the functional and non-functional requirements (see Fig. 5).
Once the set of valid data sources is identified on the basis of the functional
requirements, each source is enriched with the utility scores that are evaluated
considering the application and data source status. On the basis of these data, the
application developer makes the final decision and the selected data source is
instantiated and bind to the application.

1.7 Using the Data Utility Model

 Given a task and a data source composing the data intensive application, the
evaluation of the Data Utility considers all the possible configurations, in the edge
or in the cloud, of both the data source and the task. At this stage, the Data Utility
model returns an evaluation based on three main dimensions, i.e., Reputation,
Data Quality, and QoS. Thus, a tool supporting the designer by adopting the
proposed Data Utility model can show, for each task and each configuration,
where more than a data source is available (e.g., Task C), and how these three
dimensions vary (see Fig. 6)In case a ranking of the different alternatives is
required, different methods for identifying the best data source are available. They
range from a simple aggregation (e.g., average or weighted average) of the

Fig. 5: Data lifecycle from an application perspective.

16

different dimensions to more advanced techniques for multiple-criteria decision
analysis (i.e., MCDA methods).

Fig. 6: Using Data Utility model to evaluate alternative data sources [11].

Although the proposed model provides a significant and useful tool for data
intensive application designers to understand the impact of moving data and tasks
with respect to the Data Utility, this evaluation focuses only on a task level
analysis. For this reason, we advocate the need of a global Data Utility model that
is able to capture the Data Utility of the entire application based on the selection
of the different sources. At this stage, the definition of a Global Data Utility
measure, that is the utility of the results provided to the final user, is under
investigation, and here we would like to outline which are the main elements to be
considered.
First of all, we want to highlight that an increasing number of tasks and possible
data sources imply an exponential increasing of the Data Utility evaluations
required. This increment can be mitigated by the number of constraints that the
designer can put to the requests in terms of allowed data movements. For instance,
Task A and source 𝐷𝑆# are only considered in the edge because of a constraint
forbidding to move the data produced by the sensors. For simplification, we
assume that each task can be moved in the edge only if its predecessor is already
in the edge (otherwise moving it does not provide any advantage since
communication is not improved). This is true for our example, but not generally
true when several tasks use data produced by edge devices.
To give an idea, referring to the example discussed in Sect. 1.3, the different
possible configurations are summarized in Table 1, where only two Weather Data
providers are considered: 𝐷𝑆%I and 𝐷𝑆%J. The table is horizontally divided in
four sections, each one representing a possible task deployment configuration,
where on the right all the combinations about data source selection and placement
is considered.

17

Table 1: Deployment alternatives in a Fog Environment.

 Task A Task B Task C Task D 𝐷𝑆# 𝐷𝑆%I 𝐷𝑆%J

Depl. 1 Edge Edge Edge Edge Edge Edge --

Depl. 2 Edge Edge Edge Edge Edge Cloud --

Depl. 3 Edge Edge Edge Edge Edge -- Edge

Depl. 4 Edge Edge Edge Edge Edge -- Cloud

Depl. 5 Edge Edge Edge Cloud Edge Edge --

Depl. 6 Edge Edge Edge Cloud Edge Cloud --

Depl. 7 Edge Edge Edge Cloud Edge -- Edge

Depl. 8 Edge Edge Edge Cloud Edge -- Cloud

Depl. 9 Edge Edge Cloud Cloud Edge Edge --

Depl. 10 Edge Edge Cloud Cloud Edge Cloud --

Depl. 11 Edge Edge Cloud Cloud Edge -- Edge

Depl. 12 Edge Edge Cloud Cloud Edge -- Cloud

Depl. 13 Edge Cloud Cloud Cloud Edge Edge --

Depl. 14 Edge Cloud Cloud Cloud Edge Cloud --

Depl. 15 Edge Cloud Cloud Cloud Edge -- Edge

Depl. 16 Edge Cloud Cloud Cloud Edge -- Cloud

 A second aspect to be considered concerns the mutual influences between tasks,
making the data source selection and movement a complex decision. Two factors
should be considered in the global Data Utility computation:

● The Data Utility of a task 𝑡' influences the Data Utility of a task 𝑡(with 𝑡'
successor of 𝑡(. It means that the selection of a data source for task 𝑡' has
an effect on 𝑡(which uses the output provided by 𝑡', both directly and
indirectly. In the example depicted in Fig. 1, selecting a data source
𝐷𝑆%E optimizing the Data Utility for Task C impacts on the Data Utility
of Task B in which different requirements could make a data source
𝐷𝑆%F more convenient for the global Data Utility. On the computation
movement perspective, this dependency is also relevant. As an example,
moving Task B to the edge may improve its the Data Utility by allowing
a faster access to its input (generated by Task A), but affects the

18

performance of Task C for which a higher latency in data retrieval must
be considered.

● The Data Utility of a task 𝑡(influences the Data Utility of a task 𝑡' with 𝑡'
predecessor of 𝑡(. Maximizing the Data Utility means selecting the best
coupling between a task and a data source according to the task
requirements, while maximizing each components of the Data Utility
model. As an example, focusing on source selection, if both 𝐷𝑆%E and
𝐷𝑆%F satisfy the task requirements, 𝐷𝑆%E could be selected because of a
better timeliness if compared with 𝐷𝑆%F. However, 𝑡(requirements
could be violated by 𝐷𝑆%E, and in this case 𝐷𝑆%F would be preferable.

Finally, providing techniques and heuristics for selecting the deployment
configuration maximizing the global Data Utility for the user of the application is
out of scope, but is an interesting challenge that might be considered in the future.

1.8 Concluding Remarks

Nowadays, the amount of available data sources is continuously increasing. This
is mainly due to the fact that new technologies and applications allow us to
transform many aspects of our life into digital data. Data intensive applications
analyse such data in order to understand them and support decision making
processes, the design of advanced services, or the optimization of existing
processes.
However, having a high quantity of accessible data sources is not always an
advantage for the application developers. In fact, they may experience some
difficulties in selecting the appropriate source for their goals. For this reason, in
this chapter we have introduced the Data Utility concept that is able to evaluate
the relevance of a data source along the usage context. The context is defined in
terms of both the developers’ requirements and the status of the system in which
data sources and applications are stored and deployed. In particular, we define our
approach by considering data intensive applications running on a Fog
environment. In such scenario, the location of both tasks and data sources can be
changed by using cloud or edge resources; therefore, the influence of data and
computation movement is also considered in the Data Utility definition. Currently,
the presented contribution supports the Data Utility driven selection of the data
sources at the task level. However, the evaluation of the optimal utility for an
application as a whole is under investigation to consider the influences among
tasks, as well as the constraints over the deployment.

Acknowledgements
This research has been developed in the framework of the DITAS project. DITAS
project receives funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement RIA 731945.

19

References

1. Borthakur D. (2008) HDFS architecture guide, Hadoop Apache Project
2. Pokorny J. (2013) NoSQL databases: a step to database scalability in web environment.

International Journal of Web Information Systems. Mar 29;9(1):69-82
3. Chodorow, K. (2013) MongoDB: The Definitive Guide: Powerful and Scalable Data

Storage. O'Reilly Media, Inc.
4. Apache Cassandra, http://cassandra.apache.org (last access 26/01/2018)
5. Bhandarkar M. (2010) MapReduce programming with apache Hadoop. In: Parallel &

Distributed Processing (IPDPS), 2010 IEEE International Symposium on 2010 Apr 19 (pp.
1-1). IEEE.

6. AWS Lambda, https://aws.amazon.com/lambda/ (last access 26/01/2018)
7. Shi, W., Dustdar, S. (2016) The Promise of Edge Computing. Computer 49(5), 78–81
8. Bonomi, F., Milito, R., Zhu, J., Addepalli, S., Fog computing and its role in the internet of

things, In Proceedings of the First Edition of the MCC Workshop on  Mobile Cloud
Computing, pp. 13–16. MCC ’12 (2012)  

9. OpenFog Consortium Architecture Working Group, OpenFog Architecture Overview
(February 2016), http://www.openfogconsortium.org/ra  

10. Plebani, P., Garcia-Perez, D., Anderson, M., Bermbach, D., Cappiello, C., Kat, R.I., Pallas,
F., Pernici, B., Tai, S., Vitali, M., Information Logistics and Fog Computing: The DITAS
Approach, In Proceedings of the Forum and Doctoral Consortium Papers Presented at the
29th International Conference on Advanced Information Systems Engineering, CAISE 2017,
Essen, Germany. pp. 129–136. CEUR Vol-1848 (2017)

11. Cappiello, C., Pernici, B., Plebani, P., Vitali, M., Utility-Driven Data Management for Data-
Intensive Applications in Fog Environments, In International Conference on Conceptual
Modeling (pp. 216-226), Springer, Cham ((2017)

12. Kock, N., Encyclopedia of E-collaboration. Information Science Reference, Imprint of IGI
Publishing, Hershey, PA (2007)

13. Syed, M.R., Syed, S.N, Handbook of Research on Modern Systems Analysis and Design
Technologies and Applications, Information Science  Reference, Imprint of IGI Publishing,
Hershey, PA (2008)

14. Hundepool, A., Domingo-Ferrer, J., Franconi, L., Giessing, S., Nordholt, E.S., Spicer, K., de
Wolf, P.P., Statistical Disclosure Control, John Wiley & Sons (2012)

15. Weiss, G.M., Zadrozny, B., Saar-Tsechansky, M., Guest editorial: Special issue on  utility-
based data mining, Data Mining Knowledge Discovery 17(2), 129–135 (Oct 2008)

16. Lin, Y.C., Wu, C.W., Tseng, V.S., Mining High Utility Itemsets in Big Data, pp.  649–661.
Springer International Publishing, Cham (2015)

17. Ives, B., Olson, M.H., Baroudi, J.J., The measurement of user information satisfaction,
Commun. ACM 26(10), 785–793 (Oct 1983)

18. Wang, R.Y., Strong, D.M., Beyond Accuracy: What Data Quality Means to Data
 Consumers, Journal of Management Information Systems 12(4), 5–33 (1996)

19. Ho, T.T.N., Pernici, B., A Data-Value-Driven Adaptation Framework for Energy
 Efficiency for Data Intensive Applications in Clouds, In Technologies for Sustainability
(SusTech), 2015 IEEE Conference on. pp. 47–52. IEEE (2015)

20. Moody, D., Walsh, P., Measuring the Value of Information: An Asset Valuation  Approach,
In European Conference on Information Systems (1999)

21. Even, A., Shankaranarayanan, G., Berger, P.D., Inequality in the utility of customer data:
Implications for data management and usage, Journal of Database Marketing & Customer
Strategy Management 17(1), 19–35 (2010)

22. Gharib, M., Giorgini, P., Mylopoulos, J., Analysis of information quality requirements in
business processes, revisited, Requirements Engineering pp. 1–23 (2016)

http://cassandra.apache.org/
https://aws.amazon.com/lambda/

20

23. D’Andria, F., Field, D., Kopaneli, A., Kousiouris, G., Garcia-Perez, D., Pernici, B., Plebani,
P., Data Movement in the Internet of Things Domain, In Proc. Eur. Conf. Service Oriented
and Cloud Computing, ESOCC 2015. pp. 243–252 (2015)

24. Gomez, A., Merseguer, J., Di Nitto, E., Tamburri, D.A., Towards a UML Profile for  Data
Intensive Applications, In: Proc. Int.l Workshop on Quality-Aware DevOps.  Saarbrücken,
Germany. pp. 18–23 (2016)

25. Nalchigar, S., Yu, E., Ramani, R., A Conceptual Modeling Framework for Business
Analytics, pp. 35–49. Springer International Publishing, Cham (2016)

26. Distributed Management Task Force Inc., Common Information Model (DMTF-CIM),
https://www.dmtf.org/standards/cim

27. Cleve, A., Brogneaux, A.F., Hainaut, J.L., A Conceptual Approach to Database Applications
Evolution, Springer Berlin Heidelberg (2010)  

28. Batini, C., Scannapieco, M., Data and Information Quality-Dimensions, Principles and
Techniques, Data-Centric Systems and Applications, Springer (2016)

29. Garijo, D., Alper, P., Belhajjame, K., Corcho, O., Gil, Y., Goble, C.A., Common Motifs in
Scientific Workflows: An Empirical Analysis, Future Generation Computing Systems 36,
338–351 (2014)

Index

Cloud	Computing	.	2,	20,	21,	22,	24,	
25	
computation	7,	8,	22,	23	
DaaS	3,	5,	6,	10,	14,	17	
Data	as	a	Service	1,	2	
Data	intensive	1,	7,	10,	11,	19	
data	intensive	application	1,	2,	3,	5,	
6,	7,	8,	9,	11,	12,	15,	16,	18,	19,	
23	

data	lifecycle	2,	3,	17	
Data	Quality	2,	15,	16,	18,	24	
data	source1,	3,	6,	7,	10,	11,	12,	13,	
14,	15,	16,	17,	18,	19,	22,	23	

data	storage	...	8	
Data	Utility	1,	2,	3,	4,	5,	7,	10,	11,	
12,	14,	15,	16,	17,	18,	19,	22,	23	

deployment	1,	3,	7,	8,	11,	19,	23	
design	time	..	8	
Edge	Computing	1,	2,	3,	5,	6,	7,	8,	9,	
10,	15,	18,	19,	22,	23	

effectiveness	1,	4,	6,	8,	14	
efficiency	1,	4,	6,	8	

External	Sources	10	
Fog	Computing	1,	2,	3,	7,	8,	9,	10,	
11,	15,	20,	23,	24	

functional	requirements	13,	17	
heterogeneous	environment	10	
initial	resource	10	
Internal	Sources	10	
IoT	...	2	
non-functional	requirements	13	
PDU	..	15,	17	
possible	resources	10,	12	
QoS	13,	14,	15,	18	
Reputation	15,	16,	18	
requirements	1,	3,	4,	6,	7,	12,	13,	
14,	15,	17,	22,	23,	25	

Resources	...	9	
sensors	2,	5,	6,	9,	10,	15,	19	
smart	devices	1,	9	
task	1,	5,	6,	8,	11,	12,	13,	14,	15,	16,	
18,	19,	22,	23	

Virtual	Machines	9	
VM	..	9	

https://www.dmtf.org/standards/cim

