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Abstract. Energy efficiency and quality of service are two important
aspects in cloud applications. Their management requires the collection
of a large amount of data through a monitoring system which monitors
the behaviour of the application. In order to provide an effective ap-
proach towards efficiency and quality management, it is important to
investigate relations and mutual influences between the monitored met-
rics. This analysis can be time and computational expensive. In this pa-
per we propose to monitor the system in a distributed manner. We also
propose to use a map-reduce like approach to analyse relations among
the monitored variables by executing the computation locally and then
sending the results to a coordination node. In this way we are able to
create a dynamic model of the relations among monitored variables, here
represented as a Bayesian Network.

1 Introduction

Energy consumption in modern data centers is becoming a relevant issue that can
not be ignored by data center owners. Improving the efficiency of the hardware
is an important step but it is not enough. Also applications plays an impor-
tant role in energy consumption and an efficient management of applications
running in clouds can substantially improve Energy Efficiency (EE) and reduce
CO2 emissions [4][5]. To reach this goal, applications need to be monitored and
evaluated. The evaluation enables the enactment of proper strategies to improve
the EE and the quality of service (QoS) of the application itself.

The considered scenario takes into account a service oriented architecture
where an application can be deployed in a distributed way in the cloud. The
application is decomposed in separated tasks, each one hosted in a dedicated
Virtual Machine (VM). VMs are allocated to physical servers in the cloud but
they can be migrated at any time if needed. In such an environment, a typical
monitoring system will require to collect data in a centralized way by monitoring
every relevant component through a monitoring agent and collecting all the data
in a unique storage device in the cloud. This methodology allows a coordinated
management of the monitoring system but can be inefficient when the data to be
collected are copious. In fact, the centralized system can meet with performance
issues which result in lower precision. Also, when the monitored data are used to
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raise alarms about the behaviour of the application, the delay in the detection
of a non desired behaviour can provoke a delay in fixing the arisen issue.

In this work we face the issue of efficiently monitoring and managing ap-
plications in a cloud environment. We propose a goal oriented model where
adaptation strategies can be addressed when an inefficiency is discovered. We
state that understanding relations between the variables of the system is an im-
portant step to enable adaptation. To discover these relations, we propose to
use an algorithm able to automatically learn a Bayesian Network (BN) from
monitoring data. Each node of the BN is a variable of the system and a relation
between two nodes represents a causal relation among two variables. We propose
a distributed monitoring system which monitors some system and application
related metrics able to represent the efficiency and QoS of applications. The
distributed approach reduces the cost and the time needed to transfer the mon-
itoring data from the monitored component to a central collection storage. We
exploit the distributed monitoring system by running a distributed analysis of
the application behaviour to learn the BN. This approach considerably reduces
computation time and increases scalability.

The rest of the paper is organized as follows. In Sect. 2 we analyse the state
of the art. Sect. 3 introduces the goal-oriented approach and the algorithm for
learning the BN. Sect. 4 proposes the implementation of a distributed monitoring
system to enable the distributed learning algorithm described in Sect. 5. Finally,
results are discussed in Sect. 6 and some final remarks are presented in Sect. 7.

2 State of the art

Energy consumption in ICT is growing annually by 4% despite efficiency gains
in technology, and its carbon impact is now comparable to air travel [12]. For
these reasons, also the application perspective should be considered in order
to reduce energy consumption in data centers and clouds. This topic has been
widely studied in recent years and a wide range of methodologies to manage
EE in ICT has been proposed [17][2][14]. However, EE comes at a cost and
it is therefore important to study ways to reduce energy consumption while
preserving acceptable levels of QoS. These two aspects are usually in contrast as
discussed in [7]. The first step to manage these two perspectives consists in the
evaluation of the system that is obtained through monitoring relevant metrics. In
[6] a set of Green Performance Indicators (GPIs) and Key Performance Indicators
(KPIs) are proposed to state the EE and the QoS in data centers from an
application point of view. These metrics have been enriched in the framework of
the ECO2Clouds project1 with new carbon-aware metrics for cloud applications
in [16]. After the assessment, retrieved information can be used to adapt the
system towards a desired state as proposed in [9] where collected data are used to
mine relevant events, and in [5] where a smart deployment algorithm is proposed
to reduce CO2 emissions in clouds.

1 ECO2Clouds: http://eco2clouds.eu/
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When dealing with a big amount of data travelling from a location to another
as in cloud computing, the cost of the transportation can not be ignored [1]. The
efficiency in data transmission has been discussed in the literature (e.g. [3]). De-
centralization in the monitoring system and in data analysis can considerably
reduce this issue by lowering the amount of data travelling in the network. First
steps towards a distributed monitoring system have been discussed in the lit-
erature. In [18] authors state the inefficiency of using a centralized monitoring
approach when dealing with large amounts of data and propose to use a de-
centralized approach to efficiently detect and filter events, and discover their
temporal correlations. Events are aggregated in a set of databases rather than
a centralized database, where the event correlation mining can be executed in
parallel. A different scenario is depicted in [13] where a distributed monitoring
approach is applied to wireless monitoring of energy consumption in smart build-
ings in order to learn the user usual behaviour and to reduce energy waste. Also
in [10] the problem is faced. Here, the authors propose self-organized computa-
tional structures that can pool together their computational resources to collect
and analyse data in real-time for decision making in the field of robotic swarms.

In this paper we propose to apply the concept of distributed monitoring and
analysis to a cloud environment in order to improve EE and performance of
applications deployed on the cloud.

3 The proposed approach

Managing EE and QoS of applications in a cloud environment is challenging. In
fact, a lot of variables can have an impact on both these aspects. Also, since these
two perspectives are in conflict in most of the cases, it is necessary to balance
them in order to fulfil as much as possible the requirements of the service owner
organization.

In this paper we propose to manage EE and QoS of an application using a
goal-oriented model. The model, described in [15], is composed of two layers:

– The Goal Layer - In the upper layer we define the goals of the organization
providing the service. Goals are expressed through variables that are able
to properly express the behaviour of the system both in terms of EE and in
terms of quality of the service provided. According to this, in the goal layer
there are two kinds of variables: GPIs (Green Performance Indicators) used
to measure the efficiency in terms of energy, and KPIs (Key Performance In-
dicators) used to measure quality. Several GPIs and KPIs have been defined
in the literature . The selection of a subset of them depends on the goals of
the application provider and users. A set of thresholds is assigned to each
of these indicators. Thresholds allow the customer to define which are the
acceptable range of values. The selected thresholds characterize the strategy
of the customer who can be more sensitive towards some specific aspect and
less towards others.

– The Treatment Layer - In the lower layer we represent possible adaptation
strategies that can be applied to fix undesired states for the goals. When
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Fig. 1. A goal-oriented model for managing EE and QoS of a cloud application

indicators are violated a strategy can be selected in order to improve the
state of the indicators and bring the system back into the desired situation.
Actions and goals are linked together. A link between these two components
of the model means that the action has an effect on the goal and can be
used to improve its state. Treatments and their selection strategy are not of
interest in this work, but a description can be found in [15].

A generic representation of the proposed goal-oriented model is shown in
Fig. 1. In this work we focus on the upper level and in particular on the issue re-
lated to the evaluation of the values of the indicators and the exploitation of this
knowledge to improve EE and QoS. As can be observed from the model, goals in
the upper level are interconnected. These connections express interdependencies
existing among the satisfaction of indicators. When a relation exists between two
goals, then violations or satisfactions of these variables are not independent and
so, a modification in the state of the first has an impact (positive or negative)
in the state of the other one. These relations are sometimes obvious but in other
cases hidden. Also, in a cloud environment where a lot of variables are monitored,
drawing these relations can be a very complex and time expensive task. For this
reason we propose to automatically learn relations using a BN representation,
where each node in the network is the representation of an indicator while a link
expresses influences between goals. In [15] we proposed an algorithm for auto-
matically learn a BN from the monitored data. The algorithm follows three main
steps. First of all, a large set of monitored data collected for a long period of
time are analysed to discover strong relations through correlations. Then, start-
ing from this knowledge, the BN structure is built by selecting relevant edges
and directing them using the Max-Min Hill Climbing (MMHC) algorithm [11].
Finally, the conditional probability table for each of the links is computed using
well known techniques such as Maximum a Posteriori Estimation (MAP). That
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approach was suitable for a data center where dimensions can be relevant but
limited. In a cloud environment, an approach requiring to store a big amount of
monitored data and to process it all at once for computing the BN describing all
the relations among goals is not scalable. Also, since applications deployment in
the cloud is dynamic and can change over time, the BN needs to be recomputed
in order to reflect the real structure of the system. From experimentation, we
observed that the computation time increases exponentially with the number of
variables, so each computation requires an amount of time that is not feasible
with the needs of a dynamic environment.

In this paper we propose to use a distributed monitoring system and a dis-
tributed BN computation algorithm in order to increase the scalability of the
approach and to reduce the latency needed for the computation of the BN. First
of all we analyse the monitoring system, introducing a set of indicators and ex-
plaining how they can be collected in a distributed way (Sect. 4). Then we adapt
the algorithm described in [15] for learning interconnections among goals to a
distributed environment, making it more dynamic and scalable (Sect. 5).

4 Distributed monitoring of energy and quality related
metrics

Monitoring EE and QoS in a cloud application requires the collection of a con-
sistent amount of data during all the lifetime of the application. Indicators are
computed starting from the data collected by a monitoring system. Several works
proposed a set of indicators valuable for assessing EE, QoS, and sustainability
of applications in data centres and clouds [8][16][6]. Starting from this set of
indicators we selected a subset that will be used as an example in the rest of the
paper. However a different subset could be used without affecting the approach.
We classify metrics using two different perspectives. First of all we distinguish
between:

– Performance metrics: used to measure the performance of a service or system;
– Energy metrics: used to assess the efficiency in terms of energy consumption

of a service or system.

The other perspective is related to the component of the system that is monitored
by the metric. According to this we distinguish between:

– Application level metrics: used to monitor the behaviour of the application
or part of it;

– Server/VM level metrics: used to monitor a physical or a virtual machine
hosting the application;

– Data center level metrics: used to monitor more in general a data center
which contains the physical machines hosting the application.

In Table 1 we show a set of metrics that we are going to use as an example
in the rest of the paper and the category to which they belong for each of the
two perspectives.
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Table 1. Classification of the considered indicators

Indicator Levels P/E

Energy all levels E

CPU Usage VM, host P, E

Memory Usage VM, host P, E

Response Time application P

I/O throughput application P

Performance per Energy application E

Throughput application P

Storage Usage application, host P, E

CO2 Emissions application E

Energy mix factor data center E

Metrics are described with a formula and a support. The formula express how
the metric can be computed starting from raw data collected by the monitoring
system. The support allows the user to define the range of desired values for
each of the metrics. When the value of the metrics is inside this range the goal
is considered satisfied, otherwise this is a trigger for enacting adaptation.

The most extensively used monitoring systems (e.g. zabbix2 and nagios3)
allow the monitoring of some basic information and the customization of the
monitored data by creating a set of scripts that are executed by a monitoring
agent (Fig. 2(a)). Samples are collected at different rates which can be specified
by the user. Once retrieved, the data are moved in a centralized database which
keeps the information for further analysis. In such an environment, the size
of the collected information increases quickly and the transmission of such an
amount of data to the collecting point can be problematic, forcing to increase
the sampling interval loosing in precision. The collected data are only the first
step of the monitoring system. In fact, they need to be manipulated to compute
the indicators selected by the client of the cloud infrastructure. Usually, also this
computation is performed in a single node executing queries to the centralized
database. Another disadvantage of a centralized collection of monitored data is
due to the fact that to perform analysis on the behaviour of the indicators this
big amount of data needs to be manipulated. If these computations are complex,
they will require a lot of time to be all executed.

In our approach we propose to use a distributed monitoring system as shown
in Fig. 2(b). Data are retrieved hierarchically by the monitoring agents running
on the servers and on the VMs. One or more storage devices in each data center
are in charge of storing local data obtained from monitoring the servers, the
VMs and the specific tasks of the application deployed on them. Data needed
for monitoring the whole application are sent to a global storage device in the

2 Zabbix: http://www.zabbix.com/
3 Nagios: http://www.nagios.org/
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(a) Centralized monitoring management (b) Distributed monitoring management

Fig. 2. Comparison between the centralized monitoring system management and the
proposed distributed approach

cloud. Given this structure, also the analysis of the data can be performed in a
distributed way. We propose to analyse data in two steps:

– local analysis: computations are executed on each host involved in the cloud
application to compute local indicators and to perform local analysis. In this
step, the computation of indicators at the VM, activity, and host granularity
level is executed;

– global analysis: some of the collected or computed data are moved to a
centralized node which is in charge of computing and analysing indicators
at the application and cloud level.

The distributed monitoring system keeps local indicators inside a local stor-
age and global indicators in a storage device in the cloud. In the following section
we exploits the advantages of a distributed monitoring system for performing the
analysis of the relations between goals in a scalable and efficient manner.

5 A distributed algorithm for learning metrics relations

The distributed monitoring system approach represented in Fig. 2(b) is the start-
ing point for performing a distributed analysis over the collected data. Given
the described architecture, data are stored in several storage devices and each
of them can be accessed by a local server to perform analysis. In this section
we exploit the proposed architecture for improving the BN learning algorithm
described in [15] using a map-reduce inspired approach.

As introduced in Sect. 3, the original algorithm is performed in three steps:

– Correlation computation: in this step all the historical values for the indica-
tors are used to discover correlations;

– BN structure learning: causal relations between the states of goals are dis-
covered applying the MMHC algorithm which deletes or directs edges;
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Fig. 3. Computation time exponential growth of the centralized learning algorithm [15]

– CPT learning: given the structure, conditional probability tables are learned
using existing approaches, such as MAP.

The discovered BN can be used to perform “what if” analysis and to pre-
dict future states of indicators. The algorithm has been proven to be effective,
with an average success rate in prediction of 87.5%. However, the computations
needed to build the network are complex and require a significant amount of
time to be executed. Also, computation time increases exponentially with the
number of variables composing the BN, as shown in Fig. 3. With 30 variables,
the computation of the network takes about 18 minutes to be executed. In a
cloud environment we expect the number of monitored variables to be much
higher than 30, making the solution not feasible in a dynamic environment.

Experimental results have proven that relations are automatically organized
in clusters which reflect the physical structure of the system. An example is
shown in Fig. 44, representing goals relations in a data center running an ap-
plication composed of three task deployed in three VMs and running on two
different servers. As can be observed, relations are discovered between indica-
tors monitored on the same VM (e.g. V1), and between indicators monitored on
a server and the ones monitored on the VMs deployed on it (e.g. between S1
and V1 or V3). On the contrary, no relations are discovered between indicators
of different VMs (e.g. V1 and V3) or of different servers.

This result can be exploited to learn the network in a distributed way, com-
puting in parallel different parts of the network and then merging them together
to build the complete network. This is allowed by the conditional independence
property of BNs. The pseudocode of the algorithm for learning the BN of the
application related indicators in a distributed environment is shown in Alg. 1.
The algorithm decompose the original problem of discovering relations among
all the indicators into sub-problems where a limited set of indicators are con-
sidered. First of all, the learning algorithm is executed for each VM involved in
the application building the network for VM level and activity level indicators.
This operation can be executed sequentially or in parallel for all the VMs, since

4 Legend: Vi = VM, Si = server, U(x) = cpu usage, R(x) = response time, PE(x) =
performance per energy, E(x) = energy consumption



9

Fig. 4. An example of BN discovered by the algorithm: variables relations are auto-
matically organized in clusters according to the physical structure of the system[15]

ALGORITHM 1: The distributed BN learning algorithm

Input: the monitored values at the different monitoring levels {I(x)} for the application App
Output: a Bayesian Network describing relations among variables BNApp

∀ virtual machine deployed on a server Sj VMij do:
find the correlations Cij inside the set {I(VMij)};
find the BN structure BNij for Cij ;
compute the CPT for BNij ;

end;
∀ server Sj do:

find the correlations Cj between {I(Sj)} and I({[VMij ])}) representing the VMs deployed on
the server Sj ;

find the BN structure BN ′
j for Cj ;

compute the CPT for BN ′
j ;

merge BN ′
j with BNij in a unique network BNj ;

end;
find the correlations CApp between {I(App)} and I({[Sj ])}) representing all the servers hosting an
application activity;

find the BN structure BN ′
App for CApp;

compute the CPT for BN ′
App;

∀ j merge BN ′
App with BNj in a unique network BNApp;

Return BNApp;

each sub-problem is independent from the others. The second step consists in
computing the server level network. The computation is executed for each server
involved in the application by looking for relations among the server variables
and the VM and activity variables of all the VMs deployed on the server. Even
if this set of variables can be big, we are not looking for relations among all the
considered variables, but only between the few server variables (in our previous
example only variables) and all the others, thus reducing the computation time.
Finally, the application level metrics are considered and relations are discovered
between them and all the other variables. As before, the number of variables to
investigate is considerably reduced.

A graphical representation of the algorithm behaviour is shown in Fig. 5.
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Fig. 5. A graphical representation of the steps of the distributed learning algorithm

6 Results

The results, obtained using the distributed algorithm for learning relations be-
tween goals described in Sect. 5 and enabled by the distributed monitoring ap-
proach described in Sect. 4, are compared with the centralized approach in terms
of the computation time needed to build the complete BN. We start with the
same configuration for both approaches, in which we have two servers hosting one
VM each. We monitor four different metrics for each VM and associated activ-
ity: CPU usage, response time, performance per energy and energy consumption.
For each server we consider only CPU usage and energy consumption. To eval-
uate the scalability of the algorithm, we observe how the system reacts to the
deployment of new VMs while keeping fixed the set of monitored metrics and
the number of servers. We compare also the sequential and parallel approach to
evaluate the worst and the best case for each configuration.

Results are shown in Fig. 6 where, for each number of VMs, the third bar rep-
resents the centralized execution time, the second bar represents the distributed
algorithm using sequential execution (worst case), and the first bar represents
the results of the distributed algorithm with parallel execution (best case). As
can be observed, the computation time of the distributed algorithm is consid-
erably reduced and, more important, it grows linearly with the number of VMs
instead of exponentially as in the centralized version. The data reported in Fig. 6
are valid for the first computation of the network. Since we are dealing with a dy-
namic environment in which the deployment of the application can change over
time, the network needs to be updated at each modification. The distributed
approach simplifies this step. In fact, every time a modification occurs, only the
part of the network involved in the modification has to be recomputed, while the
rest of the network remains fixed. As an example, in the BN shown in Fig. 4, if
V1 is removed only relations between S1 and V3 are affected. If instead a new
VM V4 is added to server S2, only the BN for V4 needs to be discovered and
the relations between variables on S2 and variables related to V2 and V4 have
to be updated. Other VMs (e.g. V1 and V3) or servers (e.g. S1) are not affected.
The linear behaviour and the fast update are big improvements in comparison
with the original centralized algorithm.
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Fig. 6. Computation time comparison for the BN learning algorithm

7 Conclusion and future work

In this work we have proposed to manage EE and QoS in cloud applications using
a goal-oriented model. To enable the model to work properly, relations among
metrics need to be discovered. A centralized approach is not scalable for this pur-
pose. We proposed a distributed monitoring system, allowing the retrieval and
storage of monitoring information locally, to reduce costs and delays due to data
transmission in a centralized data collector. Indicators related to EE and QoS
of the monitored application can be computed and stored in a hierarchical way,
starting from the VMs hosting the application tasks. The distributed monitoring
system enables an efficient analysis of the indicators. Relations between indica-
tors are discovered using advanced machine learning techniques while the time
needed for the computation is optimized. The proposed distributed algorithm
learns a BN representing causal relations existing among goals by decomposing
the problem into smaller steps at different granularity levels: isolated networks
for each VM involved in the application are learned and then they are composed
together in a unique BN using a map-reduce inspired approach. Results have
shown that the computation time of the proposed algorithm is reduced between
the 62% and the 92% when all the networks are computed sequentially, and
between the 81% and the 96% when parallel computation is enabled. The ad-
vantage of using the distributed algorithm keep growing with the number of VMs
considered. This improvement can be obtained without affecting the precision
of the learned BN. In future work we plan to further increase the scalability by
classifying variables in the system through an ontology. This knowledge can be
used to predict possible relations among similar variables on different machines.
This temporary knowledge can be used when a new VM is added to the system
until enough monitoring data to build the real network are collected.



12

References

1. Andersson, G., Ilic, M.D., Madani, V., Novosel, D.: Network Systems Engineering
for Meeting the Energy and Environmental Dream. Proceedings of the IEEE 99(1),
7–14 (2011)

2. Beloglazov, A., Buyya, R., Lee, Y.C., Zomaya, A.: A Taxonomy and Survey of
Energy-Efficient Data Centers and Cloud Computing Systems. Advances in Com-
puters 82(2), 47–111 (2011)

3. Berl, A., Gelenbe, E., Girolamo, M.D., Giuliani, G., Meer, H.D., Dang, M.Q.,
Pentikousis, K.: Energy-efficient cloud computing. The Computer Journal 53(7),
1045 (2010)

4. Cappiello, C., Plebani, P., Vitali, M.: Energy-Aware Process Design Optimization.
In: Proceedings of the 3rd Int. Conference on Cloud and Green Computing (2013)
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