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Abstract. The usage of sensors, smart devices, and wearables is becom-
ing more and more common, and the amount of data they are able to
generate can create a real value only if such data are properly analyzed.
To this aim, the design of data-intensive applications needs to find a bal-
ance between the value of the output of the data analysis — that depends
on the quality and quantity of available data — and the performance.

The goal of this paper is to propose a “data utility” model to evaluate
the importance of data with respect to their usage in a data-intensive
application running in a Fog environment. This implies that the data,
as well as the data processing, could reside both on Cloud resources and
on devices at the edge of the network. On this basis, the proposed data
utility model puts the basis to decide if and how data and computation
movements from the edge to the Cloud — and vice versa — can be enacted
to improve the efficiency and the effectiveness of applications.
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1 Introduction

With an increasing trend, data-intensive applications are becoming fundamental
for the analysis of data gathered by the Internet of Things (IoT) [17]. In fact,
data collected through tiny and affordable sensors, and transmitted with smart
devices, are enabling the fourth industrial revolution supporting, for instance,
predictive maintenance of machineries, real-time tracking of production lines,
as well as efficient scheduling of tasks. At the same time, mobile phones and
wearables are changing the habits of people, as the data collected by these devices
can be exploited to optimize the daily activities and improve quality of life.

As the available amount of data increases, data-intensive applications require
more and more resources to properly manage and process such data. This is wit-
nessed by the numerous tools available to support both data transmission and
data processing, where scalability is the key feature (e.g., Apache Kafka, Apache
Spark, and Apache Flume). Regardless of the specific solution, efficiency in data
processing is ensured by specific file systems (e.g., HDFS) enabling a proper data
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management: data are spread among different nodes to enable parallel computa-
tion, replication is allowed for improving the reliability, and data formats adopt
grammars enabling efficient parsing. Furthermore, the computation usually relies
on resources available on the Cloud, implying the possibility to easily scale in/out
the application with respect to the amount of data to be processed.

The goal of this paper is to propose a data utility model evaluating the
usefulness of data for an application with respect to the content of the data
source, and also to the quality of the content and the data source location (on
the Cloud or on the Edge), which could affect the quality of data provisioning.
In this paper we present the first step towards this direction: the definition of a
model including all the components affecting the data utility when application
is running on a Fog environment.

The rest of the paper is organized as follows. To better clarify our approach,
we use the running example introduced in Sect. 2. Section 3 discusses the concep-
tual model of data-intensive applications running in a Fog environment. Section 4
introduces the data utility model for the previously defined data-intensive appli-
cations. Finally, Sect.5 gives an overview of the state of the art in this field,
whereas Sect. 6 concludes the paper outlining possible future work.

2 Running Example

Figure 1 draws a possible scenario, in the ambient intelligence domain, that is
used along this paper. The data-intensive application to be developed analyzes
the comfort in a building using the data coming from sensors placed in different
rooms (e.g., temperature, humidity, and brightness sensors). The application also
uses weather data, made available by external entities, to perform a validation
of the sensors and to predict possible variations suggesting actions to the users
through a dashboard. The tasks composing the application are: (i) Ambient
Sensing Alignment (Task A): it collects data coming from a set of sensors placed
in the monitored building and performs some pre-processing operations, such
as timestamps alignment and data cleaning. (ii) Ambient Sensing Aggregation
(Task B): it uses the output of the previous step to perform statistical analysis
and aggregations (minimum, maximum, and average values for each sensor or
for several sensors of the same kind in the building) which constitute the data
set relevant for the analysis. (iii) Data Enrichment and Prediction (Task C): it
integrates data produced by the previous task with information about weather
in the city where the monitored building is placed. (iv) Visualization Preparation
(Task D): it prepares the information obtained from the analysis for providing
visualization tools to the final user.

Each task has different requirements in terms of data sources to be accessed.
Input of a task can be the output of another task (F;; representing the
exchanged information from task t; to task t;) or a data sources that could
be either directly managed by the application developer or provided by external
entities. Orthogonally, data sources can be placed on devices at the edge of the
network or they reside in the Cloud. In our example, Task A will access to data
generated by a well-defined set of ToT devices (i.e., placed at the edge of the
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network), producing streaming and real time information about the monitored
building (Building Sensors DSg in Fig. 1). Task C uses weather data sets placed
in the Cloud (Weather Data DSy in Fig.1). While for Task A a specific data
source is defined through the identification of the building to be monitored, for
Task C we assume that several public data sources fit the requirements of the
application. Deciding which is the best data source to be used and where to
place the tasks or to move the data (i.e., at the edge or in the cloud) impacts the
efficiency and the effectiveness of the application. For instance, executing the
Task A and Task B on a device close to the sensors, rather than on the Cloud,
could reduce the amount of data transmitted over the network and thus improve
performance. At the same time, if the device on which we aim to execute those
tasks has a low performance, it may become a bottleneck for the application.
Moreover, the different weather data sources could have different quality levels,
so the selection could finally affect the quality of the analysis in Task C.
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Fig. 1. Example of Data-intensive application in ambient intelligence domain

To make the designer mainly focused only on the application logic, in our
approach we introduce the Data Utility as a complex metric which reflects to
which extent a data source satisfies the requirements of an application. With the
definition of the Data Utility we want to reduce the burden, from the developer
standpoint, of selecting the data sources and the location of the tasks.

3 Data-Intensive Applications in Fog Environment

Data-intensive applications are mainly defined by the data to be processed and
the computation performed on them. To this aim, a data-intensive application is
often modeled with a data flow that defines the data sources that feed the appli-
cation, as well as the steps to be performed to acquire, manage, and transform
such data. The literature already proposes some approaches for modeling data-
intensive applications. For instance, in [7] a UML profile has been specifically
designed to capture the dependencies between the tasks operating on the data
and the data themselves. Yet, the meta-models in [14] cover a broader spectrum:
from the business view to a more technical view.
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A peculiar aspect of our approach relies on the adoption of Fog computing
paradigm for designing and running the application. According to the defin-
ition in [15], Fog computing builds upon the capabilities of Cloud computing,
extending them toward the edge of the network. As a consequence, data-intensive
applications can consider Cloud and Edge as a continuum where both data and
tasks can be moved from the edge to the Cloud and vice versa. The designer,
instead of specifying a precise deployment plan, specifies the characteristics that
a node should, or must, have to run a task or to store data. At execution time,
the deployment is adapted, while the application is running, to improve the
efficiency and the effectiveness of the application. Focusing on the design stand-
point, a Data Intensive Application designed to run on a Fog environment relies
on three main elements: resources, data sources, and tasks (Fig. 2).
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Fig. 2. Data-intensive application model.

Resource. Adopting the Fog Computing paradigm, the infrastructural layer
consists of nodes (e.g., laptops, smart devices, sensors, VMs), living either on
the Cloud or on the FEdge, representing possible resources for our application.
Regardless of the actual physical location of a resource, we are interested on
its computational and storage capabilities. For an exhaustive description of the
hardware characteristics of a node, standard approaches like the DMTF-CIM?!
could be adopted. Regardless of the specific model adopted, this information is
required for understanding if a resource is suitable for hosting the execution of
a tasks or for storing some data produced or consumed during the execution.
The distinction between Cloud and Edge resources influences the level of detail
with which a designer can describe a resource. A Cloud resource is managed by
an external entity, i.e., the cloud provider, thus only a limited set of information

! http://www.dmtf.org/standards/cim.
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is available for the resource. Conversely, for resources living on the Edge, we
assume that the designer knows all the details about the resources and it has
the ability to reconfigure or to adapt them in case modifications are required
during the execution. Referring to our running example, we can assume that
the designer has the possibility to change — both decreasing or increasing — the
sampling rate for the sensors to a value that is optimal for the application.
Conversely, the way in which the weather data are collected cannot be modi-
fied by the designer and we can also assume it is not feasible also for the Cloud
provider hosting such data sources as they could be shared with other customers.

Data Source. The data source models the information needed to allow the appli-
cation to read or write the relevant data. A data source is described in terms
of the data content (i.e., how the data are structured), data access (i.e., how
to reach data), and data utility (i.e., the relevance for the usage context). A
data source is also defined by the initialResource where the source is initially
deployed, as well as the possibleResources in which it could be moved as they
satisfy the functional constraints required by the data source (e.g., the size, the
DBMS or the file system). Inspired by the approach proposed in [7], data sources
are distinguished between Internal Sources and External Sources. In the former
case, we have data that are directly managed by the application designer. This
category includes data produced by a task and consumed either by another task
or by the final user (i.e., the E;; data in the running example), data coming
from resources managed by the designer (i.e., temperature sensors at the edge),
or data sources on the Cloud where their management is under the responsi-
bility of the designer (but the management of the resources on which the data
source is deployed is up to the Cloud provider). In case of Ezternal sources, data
exist independently of the application, but need to be accessed by it (e.g., the
Weather data DSy ). In the proposed model, we assume that data content and
data access are independent from the resource in which the data source is placed.
This could be possible if a proper abstraction level is adopted to describe the
intensional schema of the data, as also suggested in [2]. About the data access,
using a proper naming scheme, like the one based on URI, makes the location
transparency possible. Thus, when data source moves from a resource to another
among the possible ones, this does not affect the behavior of tasks using these
data. Data access also includes the definition of how to interact with the data
source, distinguishing between stream or conventional methods. The focus of this
paper concerns the Data Utility that measures to which extent a data source is
relevant for a given usage. In the model, Data Utility (DU) is seen as a charac-
terization of the association between a Task and a Data Source related to the
input of the task. As discussed in Sect. 4, data utility of a data source extends
the more traditional data quality concept. Differently from data content and
access, DU could be affected by the resources used to host the data source. The
DU model introduced in the next section makes this dependency explicit.

Task. A task represents a unit of work to be performed during the execution of
the application. As suggested in [14], especially in data-intensive applications,
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there is a set of common tasks like data cleaning, data integration, data com-
pression, data encryption, and the application can be seen as a composition of
such tasks. In some cases, the algorithms behind those tasks are well known
(e.g., clustering, regression), in some others the designer has to produce some
scripts implementing the custom data processing. As for the data sources, there
is a set of possibleResources on which the task can be deployed and one of them
represents the initialResource where the task is initially deployed.

We assume that tasks are organized according to a data-flow process [5]
which highlights how data are acquired, transformed, and returned. This flow is
defined using nezt and previous attributes which capture the possible execution
flows. The connection between the tasks and the data sources represents the
input or the output of the tasks. In case of output, the task is connected to the
storage nodes, as they represent data produced internally to the application. On
the other side, the input of a task can be modeled both as a storage node or a
source node as the input of a task can be data produced by a preceding task or
made available by an external element.

4 Data Utility Model

Based on the data-intensive application model introduced in Sect. 3, now we go
into the details of some of the concepts which constitute the elements for defining
the Data Utility.

Starting from the available data sources, we indicate them with:

DS = {de} = {< Sj,i’l“j,PRj >}

where S; is the data source schema, ir; is the resource on which ds; is initially
deployed, and PR; is the set of possible resources on which it could be deployed.
As the initial resource is, by definition, one the possible resource then ir; € PR;.

Moving to the tasks that compose the data-intensive application, we assume
that each task ¢; is defined by:

t; =< DllelvoUﬂaPlaNZ7lrlapRl >

where (i) D; is a description of the task in terms of type of operations performed
(e.g., aggregation, filtering, clustering, association), (i) IN; and OUT; are the
sets of task inputs and outputs, (7i) P; and N; are the set of tasks that precede
and follow the analyzed task in the data-flow process, (iv) ir; refers to the initial
resource on which the task is deployed, while PR; the set of resources on which
it can be potentially deployed. Similarly to what stated for the data sources,
ir; € PR;.

As described in Sect. 2, tasks may gather inputs (i) from a specific data source
(i.e., Task A), (ii) from a previous task (i.e., Task B) and (iii) from a data source
that should be selected from a set of candidate sources (i.e., Task C'). Note that
we consider cases (i) and (ii) as equivalent since we assume that the output of a
task can be seen a data source. Furthermore, case (iii) is the situation in which
the developer should be supported in the selection of the sources.
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A task t; may have several inputs. The k-th input is defined as:

IN;, =< Aik,CDSik >

where, A; is the set of the attributes of the data source required by the task
(e.g., temperature, humidity), and CDS;; C DS the set of candidate data
sources from which data have to be extracted, which can be both internal and
external sources. If |CDS;;| = 1, it means that the designer has specified the
specific source to consider; otherwise the designer would like to be supported
in the identification of the most suitable source in the specified set. In this last
situation, the developer specifies a request R;; over the input I N;; in order to
provide all the elements that can affect the source selection. Let us define the
request as:

Ry =< INu, fi,, NFj, >

where, f;r is an optional parameter to express functional requirements, while
N F; is an optional parameter expressing a set of required non-functional prop-
erties. More precisely, f;; is a predicate composed of atoms linked by traditional
logical operators (i.e., AND, OR) that allows developers to specify restrictions
over the allowed values in order to better drive the source selection (e.g., city=
“Milan” AND Temp > 23). On the other hand, NFj; contains requests related
to DQ (Data Quality) or QoS (Quality of Service) aspects. The former focuses
on the quality of the content provided by the source, while the latter regards
performance issues such as availability and latency.

It is worth noting that the satisfaction of functional requirements only
depends on the content of the data source, whereas the satisfaction of the
QoS constraints depends on the resources on which the task or the data are
deployed/stored. Therefore the suitability of a data source has to be specified by
considering not only the data it contains but also the execution environment.

In this paper, for defining this suitability we introduce the Data Utility con-
cept. Data Utility (DU) can be defined as the relevance of data for the usage
context, where the context is defined in terms of the designer’s goals and system
characteristics. The designer’s goals are captured by the definition of ¢; which
includes the input descriptions and the related requests in terms of both func-
tional and non-functional requirements, while the system characteristics include
the definition of the data sources DS. On these basis, Data Utility of a data
source ds; for a task ¢; is defined as:

DUm]y = f(< iy Ty >, < de,Ty >)

Since both tasks and data sources can be placed on different resources belong-
ing to PR; and PR}, respectively, data utility depends on the task (< t;, 7, >)
and data sources (< dsj,r, >) placement, where r, € PR, and r, € PR;.

We assume that the data sources are associated with a set of metadata that
reveal the Potential Data Utility (PDU) that summarizes the capabilities of the
data source and can be periodically evaluated independently of the context.
The PDU is calculated looking at the data and the characteristics of the data
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source. It is derived from a Data Quality and a Reputation assessment. Gener-
ally speaking, as in [19] data quality can be defined as the fit for use for a data
consumer and it implies a multi-dimensional analysis including dimensions like
accuracy, completeness, timeliness [1]. In fact, errors, missing, or updated data
affect the usage and potential benefits of data. The assessment of Data Quality
dimensions may contribute to the understanding of the potential value of the
data. The list of dimensions and the assessment metrics depend on the type of
data contained in the source. For example, sensors data need the evaluation of
additional attributes such as precision and data stability and algorithms for eval-
uating accuracy change along the type of data (i.e., strings vs. numeric values).
Anyway, we can assume that each source is associated with a set of Data Quality
dimensions and related values. Besides the content, also the history about the
usage of the source should be considered. For this reason we define a Reputation
index as the likelihood that a data source will satisfy the application require-
ments. For now, we compute the reputation by considering the frequency with
which the source has been used and the respective success rate, and the scope
of data (e.g., generic or specific, integrable with other sources, used with other
sources). PDU provides an objective way to rank similar sources and can be use-
ful for a pre-filtering of the sources. However, a data source has to be evaluated
by considering the context that in our scenario is composed of the data-intensive
application and the available resources. Given a request R;; together with the
characteristics of the task and the set of candidate data sources, the request can
be enriched with additional data quality constraints derived by the type of task
(e.g., data mining operations requires a high amount of data and completeness).
The task type and request may also force the recalculation of the some data
quality dimensions (i.e., if the request is limited to a subset of attributes of the
source, the quality should be evaluated only on the considered data set).

dgLevel 1 dimensions
( Data Quality —w/
Potential re;i)r?‘;zt)l(on dimensions metrics
otentia ) . . .
Data Utility Reputation " Dimension - Metric
QoSLevel 1 dimensions
Data Utility Quality of service

Fig. 3. Model of the utility components

QoS capabilities have to be evaluated by considering all the available options
that the Fog environment offers. Thus, both tasks and data can be moved from
edge to cloud and vice-versa, from edge to edge or through cloud resources and
that the placement of a task or a data source on a specific resource has surely
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an impact on the QoS: in fact, the computational cost for obtaining data and
the latency changes on the basis of the chosen location. Therefore, we calculate
the QoS dimensions for each possible configuration defined in terms of task
placement < t;,7, > and data placement < ds;,ry, >.

In summary, Data Utility can be assessed by considering three main aspects
(Fig. 3): Data Quality, Reputation, and Quality of Service. Each of them is
evaluated by means of dimensions, each one associated with different metrics
(more than one assessment function might be available for a single dimension).
Discarding the sources and configurations that do not satisfy functional and non-
functional requirements, it is possible to associate with each source ds; belonging
to CDS;y, different Data Utility indicators (one for any admissible configuration),
each one expressed as a set of three indices: Data Quality, Reputation and QoS.

5 Related Work

Managing data, meta-data and their storage and transformation has been
addressed in several areas of research focusing on a number of separate though
possibly interrelated aspects. Data utility has been defined in different ways in
the literature. In statistics data utility is defined as “A summary term describing
the value of a given data release as an analytical resource. This comprises the
data’s analytical completeness and its analytical validity” [9]. In business scenar-
ios data utility is conceived as “business value attributed to data within specific
usage contexts” [16] while in IT environments it has been described as “The rele-
vance of a piece of information to the context it refers to and how much it differs
from other similar pieces of information and contributes to reduce uncertainty”
[11]. All these definitions agree on the dependency of DU on the context in which
data are used. Therefore, the assessment of DU is a complex issues since context
can be composed of several elements and it usually changes over time. Early
studies in data utility assessment have been carried out in the area of informa-
tion economics, investigating information utility mainly from a mathematical
perspective. In [20], the relevant economic factors for assessing DU are: (i) the
costs and benefits associated with obtaining data, (ii) the costs associated with
building the analysis algorithm to process data, and (iii) the costs and benefits
derived from utilizing the acquired knowledge. Later, the growing adoption of IT
in business shifted the attention towards the information utility associated with
business processes [4]. Other papers analyze DU by considering some specific
usage context such as data mining applications [12] or by considering context as
limited to users requirements [10]. Another important contribution relates DU
to information quality dimensions, e.g. accuracy and completeness [13]. Infor-
mation quality requirements for obtaining valuable results from processes have
been discussed in [6]. In [18], data utility is discussed in mobile clouds with the
focus on optimizing the energy efficiency of mobile devices. Energy efficiency was
also the focus of [8] where the interrelations between data value evaluation and
adaptation strategies have been discussed, with a focus on run-time adaptation
rather than on the design of applications.
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We propose a more comprehensive definition of Data Utility that includes
both the content of the data sources, the application using them and the execu-
tion environment, considering all the data and computation movement actions
that fog computing enables. Note that the concept of data movement has been
discussed in [3] as a basis for providing operations for improving quality of data
and service. However, while that paper focuses on possible operations and strate-
gies, in the current paper we focus on a comprehensive evaluation of data utility.

6 Concluding Remarks

In this paper we have introduced a conceptual model to define the Data Util-
ity for data-intensive applications in a Fog environment. The proposed model
takes into account the relationship between the tasks composing the application
and the data sources that can be used by such tasks to perform the required
computation. As the location of both tasks and data sources can change, the
influence of data and computation movement is considered in the Data Utility
Model. The evaluation of the Data Utility and the definition of a Global Utility
Model for the whole application is under investigation to consider the influences
among tasks, as well as the constraints over the deployment.
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