
Fog Computing and Data as a Service:
a Goal-Based Modeling Approach to Enable Effective

Data Movements

Pierluigi Plebani, Mattia Salnitri, and Monica Vitali

Dipartimento di Elettronica Informazione e Bioingegneria
Politecnico di Milano

Piazza Leonardo da Vinci, 32 - 20133 Milano, Italy

Abstract. Data as a Service (DaaS) organizes the data management life-cycle
around the Service Oriented Computing principles. Data providers are supposed
to take care not only of performing the life-cycle phases, but also of the data
movements from where data are generated, to where they are stored, and, finally,
consumed. Data movements become more frequent especially in Fog environ-
ments, i.e., where data are generated by devices at the edge of the network (e.g.,
sensors), processed on the cloud, and consumed at the customer premises.
This paper proposes a goal-based modeling approach for enabling effective data
movements in Fog environments. The model considers the requirements of sev-
eral customers to move data at the right time and in the right place, taking into
account the heterogeneity of the resources involved in the data management.

Keywords: Data Movement, Fog Computing, Decision System, Goal-based model

1 Introduction

The adoption of Service Oriented Architectures [18] has changed the way in which ca-
pabilities of an information system are offered and consumed. Although a gap exists
between the initial expectations of this research domain and the actual adoption [6]
(e.g., about automatic service composition), the Cloud Computing paradigm – where
everything is offered as a service – has demonstrated that service orientation has a sig-
nificant value for both consumers and providers. Nevertheless, limited attention has
been paid, so far, to the link between the service oriented paradigm and data manage-
ment. There are some approaches, under the umbrella of the so-called Data Base as a
Service (DBaaS, a.k.a., Cloud Databases), concerning how to provide DBMS function-
alities according to the Cloud Computing paradigm [1]1. Actually, data management’s
scope is wider and Data as a Service (DaaS) aims to take care of all the activities needed
to collect, process, store, and publish data, which must be accessible on-demand and
regardless of the location where they are stored or from where they are requested. Al-
though DaaS providers are mainly focused on taking care of the activities composing

1 Available commercial solutions are Microsoft Azure SQL Database, Amazon RDS and Oracle
Cloud, to name the few



2

the life-cycle, data movement management is also crucial. For instance, in IoT scenar-
ios, data are mainly generated at the edge of the network (e.g., by sensors), but they
are usually moved to the cloud, where a theoretically unlimited amount of resources is
available to efficiently store and process the data and to make them available to the cus-
tomers. Indeed, cloud resources ensure high reliability and scalability, but the network
capacity might negatively influence the latency when data movements among resources
on the cloud and the edge occur. Thus, the advantage of the fast-processing at the cloud
might be wasted resulting in lower quality of service.

The goal of this paper is to support the data management offered through a DaaS
paradigm, by enabling effective data movements able to deliver data at the right time,
the right place, and with the right quality and format, to satisfy the customer require-
ments, as conjectured in a preliminary work [8]. To achieve this goal, the proposed
solution is based on two main pillars. Firstly, DaaS provisioning adopts the Fog Com-
puting paradigm, which creates a continuum between the resources living on the edge
and on the cloud [19] to exploit the advantages of both: data on the edge are closer to
where they are generated or consumed (thus, latency can be reduced), while data on the
cloud can have more capacity (thus, processing can be more efficient). Secondly, a goal
model is used to design a decision system that includes the customers’ requirements,
the data movement actions that the environment is able to execute, and the effects of
the enactment of a data movement on the satisfaction of the requirements. According to
these two pillars, the main contributions of this paper are:

– formalization of data movement actions enriched with data transformations (e.g.,
aggregation, pseudonymization, encryption) for DaaS provisioning in Fog Comput-
ing, considering heterogeneous resources both in the edge and in the cloud belong-
ing to different stakeholders (the data provider and its customers);

– context-based selection of valid movement actions and transformation for each
cloud provider based on the definition of the storage resources provided by both
the provider and the customers;

– extension of a goal-based modeling language for the definition of customers’ non-
functional requirements with new concepts such as data movement, data transfor-
mations, and a representation of the effect of data movements on goals satisfaction;

– application of a goal-based model at run-time for dynamically selecting a proper
movement action to fix the violation of goals.

The rest of the paper is organized as follow. Section 2 motivates the proposed ap-
proach by introducing a running example. Sect. 3 analyzes data movement strategies
in Fog environments, while Section 4 discusses how to use data movement with the
goal-based model. Section 5 demonstrates the scalability of the proposed approach.
Section 6 discusses how the proposed approach is related with the current state of the
art, and, finally, Sect. 7 summarizes the proposed approach and identifies future work
directions.

2 Motivating Example

Figure 1 shows an example of DaaS providing a data source about traffic information.
The data provider manages some sensors and cameras placed on the highways of both



3

DaaS

Cloud Data 
storage

Cloud Data 
storage

Sensors/Cameras
(West coast)

Local Data 
storage

Sensors/Cameras
(East coast)

Local Data 
storage

Sensors/Cameras
(Europe)

Local Data 
storage

DaaS

US site EU site

E
dg

e
C

lo
ud

P
ro

vi
de

r
C

us
to

m
er

C
lo

ud
 +

 E
dg

e

Fig. 1. Traffic information DaaS

Europe and United States to provide real-time information about the traffic. In particu-
lar, traffic data from the West Coast go to a local data storage where they are temporar-
ily stored. The same occurs to data coming from the highways in the East Coast, as well
as from the highways in Europe. Due to the high number of customers, the data provider
relies on two cloud sites, i.e., US site and EU site, where two Cloud Data Storage, that
must be maintained consistent, are fed by all the local storages, as customers must have
visibility of traffic worldwide.

Even in this very simple scenario, it is clear how the data continuously move from
where data are generated (i.e., cameras and sensors), to the place where data are an-
alyzed, to the data storages where they are saved, to all the final customers’ storage
devices. To deal with this situation, data providers usually implement solutions aiming
to ensure the consistency and the timeliness of the two cloud data storages. In this way,
all users see the same data set and the data are provided as soon as possible. More-
over, as the capacity of the local data storages are limited, and in order to ensure a
proper timeliness of data offered to the customers, data are periodically moved from the
edge to the cloud. This type of solution is actually reasonable only if all users behave
in the same way. Actually, we can assume that the traffic information about EU are
mainly used by the European citizens, while the US citizens are more interested on the
US traffic data. Furthermore, customers can express different requirements in terms of
quality of service (QoS), including latency, timeliness, availability, and so on. As a con-
sequence, we want to support the data providers with a solution that enables effective
data movements among the data storages driven by the objective of delivering the right
data, at the right time, in the right format.

The proposed solution is based on two pillars: Fog Computing-based infrastructure
and a goal-based decision model. The Fog Computing paradigm aims to consider the



4

edge and the cloud resources involved in the service provisioning as a seamless en-
vironment. As a consequence, cloud resources do not include only the data provider
storages and the scalable applications used to make those data available, but also, if
any, the cloud resources used at the client side. Similarly, the edge includes not only the
resources that are close to where the data are generated, but also the resources directly
managed by the client to store and process the data (e.g., mobile devices).

Referring to our example, we can assume that the following resources are consid-
ered:

– data provider edge resources: local storages collecting data about traffic from sen-
sors, positioned in EU and US sites (both in west and east coast);

– data provider cloud resources: data storage located in the cloud containing an ag-
gregation of the information coming from the several edge resources, positioned in
EU and US sites;

– customer cloud resources: for customers in EU and US, these are storage resources
that belong to the clients but can be used by the data provider to store traffic data
useful for the customer application;

– customer edge resources: edge resources with limited storage capabilities that can
be used as in the previous case for storing useful information (moving or duplicat-
ing data in these additional resources).

We can reasonably assume that storages on the cloud and the edge can have different
capabilities: they can store either a complete or a portion of the data set relevant for the
specific phase of the data life cycle. Referring to our example, storages at the edge of
the provider contain the most recent traffic information about a specific set of highways,
while the cloud data storages, due to their capabilities, contain the complete set.

Moving to the second pillar, a goal-based modeling language is used to express the
non-functional requirements negotiated between a data customer and a data provider
for DaaS provisioning. We chose a goal-based modeling language as this is an intuitive
approach for the specification of requirements. The adopted language is the Business
Intelligent Model (BIM) [13], used to model trees where each level represents a set of
subgoals required to satisfy specific properties of the data provisioning, and each goal
is associated with one or more metrics used to assess the goal satisfaction.

For each customer, a tree is generated to express the QoS agreed with the DaaS
provider. An example of such tree is shown in Fig. 2 where there is one top goal, High
quality of Service, that represents the main objective to be achieved. This goal is AND-
decomposed into three sub-goals, meaning that all sub-goals must be achieved in order
to achieve the top-goal. Each sub-goal is OR-decomposed into two sub-goals. The OR-
decomposition specifies that at least one of the sub-goals must be achieved, in order
to consider the top-goal achieved. For example, Reliable Service is OR-decomposed
as Service available and Service scalable: in order to offer a reliable service, the data
provider must offer a service with a defined level of availability or a defined level of
scalability. A data provider can enrich the model with as many goals as needed to de-
scribe the capability of the DaaS service and refine the goals with the needed AND
and OR decompositions. The achievement of goals can be defined using metrics that
specify properties to be monitored and conditions that determine when goals are sat-
isfied. For example, in Fig. 2, the Fast data process goal is evaluated with the metric



5

Fig. 2. Example of a goal-based diagram for the specification of QoS requirements

Response time and it is considered achieved when its value is lower than 5 seconds.
The overall figure specifies that the data provider and customer agreed in the provision-
ing of a service that must be reliable, be fast and will maintain data consistency (first
AND-decomposition of the top-goal).

The model is the starting point to monitor the customers satisfaction and to detect
possible violations of the agreed QoS. It is worth noticing that the proposed approach
can be easily extended to include other requirements (e.g., security, privacy, data qual-
ity) by adding an additional top goal connected with AND-decompositions to all these
non-functional requirements and their sub-trees. Data movement enactment can be used
to avoid violations of the tree, as will be described in the next section.

3 Data Movement in Fog Computing
Moving data implies moving portions of the offered data set from a data storage to
another in a different location either in the edge or in the cloud. As there might be
differences in the way in which the data can be stored, data movement could also require
some data transformation. In this section, we classify data movement actions (Sect. 3.1)
and discuss their instantiation in a specific context (Sect. 3.2). It is worth noticing that
the proposed method is not limited to a specific storage model, even if different models
would affect the implementation of the movement actions. The DITAS H2020 project 2

which funded this research is dealing with this issue by providing DaaS independence
from the storage model and technology.

3.1 Movement actions and transformations

Although the generic term is data movement, the actions to be considered are: the actual
movement (M), which consists of deleting the data from the original data storage and
move them to a different one, and the duplication (D), where data are copied from a
data storage to another while keeping them in the original one. These two classes of

2 https://www.ditas-project.eu



6

Fig. 3. Data movement actions and transformations example in a fog environment

actions can be specified at a finer level of detail by considering the location where data
are moved. In a heterogeneous environment, where data storages can be placed both in
the edge and in the cloud, we have the following scenarios:

– Move/duplicate from cloud to edge (MCE , DCE): data contained in a cloud storage
are moved or duplicated in a storage placed in the edge.

– Move/duplicate from edge to cloud (MEC , DEC): data contained in an edge storage
are moved or duplicated in a storage placed in cloud.

– Move/duplicate from cloud to cloud (MCC , DCC): data contained in a cloud stor-
age are moved or duplicated in another cloud storage.

– Move/duplicate from edge to edge (MEE , DEE): data contained in an edge storage
are moved or duplicated in another edge storage.

Additionally, all the possible classes of movement actions can be subject to an ad-
ditional data transformations T when data is moved or duplicated from a storage to an-
other. Transformations consist in the manipulation of the content of a data storage and
they are requested when the format required by the source and destination data storages
are different or when they must be altered for security/privacy reasons. Examples of
transformations include:

– aggregation: the content of a data storage is reduced using aggregation operations
(e.g., average, maximum, minimum) summarizing several tuples;

– pseudonymization: data are manipulated to substitute identifying fields within a
data record with artificial identifiers;

– encryption: the data contained in a data storage are manipulated using encryption
algorithms to make them unreadable to unauthorized users.

For a given movement action, we can have different sets of transformations, which
can be either optional or mandatory. Optional transformations can be executed accord-
ing to the user requirements, whereas mandatory transformations need to be executed
every time data are moved from the data storage. Both movement actions and transfor-
mations are associated with metadata defining cost and execution time. These metadata
are required to select which action to apply given a specific strategy (cost minimization
or time minimization).

The BIM modeling language has been extended with the elements described in this
section, which create an additional layer. An example is shown in Fig. 3. The extended



7

modeling language allows to specify both data movement actions and transformations.
Movement actions are represented as rectangular boxes containing the specification of
the movement action (e.g., MEC specifies a movement class from an edge to a cloud
storage). Transformations are boxes connected to the movement action to which they are
associated. The association can be optional (white arrow) or mandatory (black arrow).
Both actions and transformations can be annotated with information about their cost
and execution time, represented as dashed rectangular boxes associated to the action or
the transformation. For example, in Fig. 3 the data movement action MEC has a cost of
7 seconds for each Tera Byte moved and of 1$ for each Giga Byte transferred, while its
Encryption data transformation add 1.3 second for each Giga Byte transformed.

While the execution time for a transformation can be obtained by testing the algo-
rithms used for this purpose, the execution time of a movement or duplication is affected
by the network latency. For this reason, we assume to have some information about the
network capacity from which we can derive the needed information. Since we are deal-
ing here with movement classes, without specifying the storage resources and locations
involved, the value that we include in the model represents the average behavior of that
class of actions. Distinguishing between classes of resources (edge vs cloud) enables us
to better predict the metadata associated to a class since, due to the heterogeneity of the
resources, edge and cloud storages will behave differently in terms of execution time
and cost. This distinction will become implicit when moving from movement classes to
movement instances as discussed in Sect. 3.2.

3.2 From movement classes to movement instances

The data movement classes described in Sect. 3.1 represent all the possible movement
actions applicable in a generic context. When instantiating the model in a specific sce-
nario, instances of these classes have to be defined according to the storage resources
available. As stated before, storage resources are made available for different customers
by the DaaS. Additional data storages can be made available by the customer, near to
where the data will be analyzed.

Referring to the running example, at the edge we have three edge data storages: i.e.,
US West coast Swc, US East coast Sec, and Europe Seu. Two geographical distributed
cloud storages are also available in the US and Europe, SUS and SEU .

Finally, each customer can provide an edge storage resource SE
cust in which the data

provider can store a subset of the information contained in an edge or cloud storage.
Distribution of data sets affects data management and in the specific case data move-

ment capabilities of a DaaS provider. Indeed, movement or duplication is possible be-
tween two data sets only if their schemas are compatible. A movement action instance
should be created for each possible combination of data storages. However, a limita-
tion on movement might derive from security and privacy constraints or from policies
defined by the provider. As an example, the provider can decide which classes of move-
ment are allowed and which transformation are mandatory for a specific class. As an
example, constraints can be expressed on data localization (e.g., it is not possible to
move data from a cloud location in Europe and another in US), or security and privacy
constraints (e.g., to be moved from the location in which they are produced, data have



8

Fig. 4. Data movement actions instances

to be pseudonymized). The model captures these constraints by removing unauthorized
movement instances and properly setting the transformations.

Knowing the available data sets, their location, their relations, and the constraints
defined by the provider, it is possible to define which are the data movement actions
that can be applied between two data sets. The steps for instantiating the data movement
actions from the movement class Mxy , with x and y indicating the type of resource (i.e.,
edge or cloud) are the following:

1. generate a movement instance for each possible combination of resources of type
x to resources of type y;

2. remove data movement instances based on the constraints defined by the provider;
3. apply constraints on the transformation and change the required transformation

from optional to mandatory (leaving optional the other transformations associated
to the action);

4. if additional information is given on resources, mutual location and capabilities,
recompute metadata; else inherit metadata from the movement class.

An example on how to get movement instances from the MEC movement class
(representing movement from edge to cloud) for our running example is shown in
Fig. 4 assuming the provider had specified a localization constraint (e.g., data cannot
be moved between Europe and US resources), and a pseudonymization transformation
constraint. In the example all possible combinations of movement instances from edge
to cloud are generated, discarding movement actions forbidden due to the localization
constraint, and setting mandatory transformations expressed by the provider. As shown,
three movement instances are generated from the movement class: from the edge in west
and east coast to cloud in the US (D(Swc → SUS) and D(Sec → SUS)), and from edge
in Europe to cloud in Europe (D(Seu → SEU )). All transformations remain optional
with the exception of pseudonymization which changes to mandatory. For the sake of
simplicity, inherited metadata are not represented in the figure. Similarly, instances will
be generated for movement class DEC and for other allowed movement actions. As can
be seen, classes metadata are useful for providing time and cost prediction in unknown
contexts. Observations at execution time are used for refining the metadata of both the
instance (collecting data about time and cost of the instance execution) and the class
(computing the average behavior of all the instances of that class).

4 A Goal-based Approach for Data Movement Management

The goal model expresses data customer requirements that the provider has to keep
satisfied. When a requirement is violated, the model supports the selection of the best



9

Fig. 5. Example of a diagram for the selection of data movement actions

data movement action in order to restore goal achievement. To enable this, we need
to enrich the goal model, expressing the agreement on QoS between the provider and
the customer, taking into account the role of data movements among the data sources
available.

4.1 A goal-based modeling language for data movement management

As the initial goal model only specifies what has been agreed between the provider
and the customer in terms of QoS, we propose to extend this model also taking into
account the effect of actions, i.e., data movement and transformations over goals. To
model the relations between data movement actions or transformations and goals, we
use contribution links. A contribution link specifies that the execution of the action (and
transformation) has an impact on the achievement of the goal. Contribution links can
have a positive effect (the execution of an action or transformation helps the achieve-
ment of a goal) or a negative effect (the execution of an action or transformation hurts
the achievement of the linked goal). Contribution links can be defined by the data pro-
vider according to its specific platform and data resources (i.e., the data provider knows
that duplicating data between two data sets has a negative effect on the consistency of
the data).

Figure 5 shows an example of the goal tree and the data movement actions con-
nected with contribution links, which constitute the proposed extension of the BIM.
For example, MEC action is connected with a positive contribution link to Fast data
process, since its adoption will improve the metric Response time and, therefore, it
will help the achievement of the goal. Similarly, the same action impacts negatively
Fast data streaming, since the movement of a data set in the cloud, in this example,
will move the data set farther from the sensors that are creating data. For the sake of
simplicity, only movement classes are represented in the figure. Movement instances



10

will inherit contribution links from their classes, since the kind of effect (positive or
negative) is the same for all the instances. In this work, we represent positive (green) or
negative (red) effect with these links. In future work we are planning to assign a quan-
titative value to these links. In this case, each instance will have a different contribution
value. To model this, the data provider and the data customer may customize the con-
tribution links according to expected behavior. Other automatic approaches can be used
for setting or refining the contribution links. As an example, in [22], the authors have
proposed a reinforcement learning approach to update the knowledge of the effect of a
set of actions over a set of goals using a Multi-Armed Bandit inspired algorithm, thus
refining the confidence of such link every time the action is enacted.

4.2 Using the goal-based model

Given the requirements of a customer, our extension of BIM is used at design time by
the data provider, to produce a customized goal-based model, containing the constraints
on the requirements relevant for the data customer and the movement actions filtered
according to the available resources.

After that, at runtime, i.e. when the data customer uses the DaaS, the data provider
monitors the goals satisfaction through the associated metrics. When a metric is out
of the defined thresholds, an automated controller, in charge of managing the DaaS
resources, selects to execute the movement action that might improve the current sit-
uation. To this aim, the controller analyzes the goal model negotiated with the data
customer and selects a set of data movement actions that affect the violated goal.

The goal-based model supports the detection of goal violations. When a metric goes
beyond the thresholds defined in a goal model, the linked goal is considered unsatisfied,
and the model is analyzed to check, using backward analysis [21, 7, 11], whether the top
goals are satisfied. For example, in Fig. 5, imagine that the goals Service available, Fast
data streaming and Transaction consistency are achieved; in this context the top-goal
is achieved too. After a while, the Throughput metric goes below 10 GB/s and the goal
Fast data streaming becomes unachieved. In this setting, the top goal is not achieved
anymore and a data movement action has to be enacted. For further details about goal
analyses in BIM please refer to [12].

The action selection is led by the knowledge of the contribution links of both the
actions and (if needed) the transformations with the goals. Before this analysis is ex-
ecuted, contribution links on non-leaf nodes are moved to leaf nodes. For example, in
Fig. 5, the positive impact propagation of the action Move from edge to Cloud to Reliable
service, is propagated to all leaf nodes Service available and Service scalable.

In order to select relevant movement actions, the controller considers all actions and
transformations that have a positive impact on the unachieved goal. If a data movement
action and one or more of its data transformations have conflicting contribution links
on the same goal, we assume the positive contribution link from the transformation is
always stronger (it overcomes) than the negative contribution from the data movement
action. In the complementary case, the negative transformation link from the transfor-
mation nullifies the positive contribution link from the action. For instance, in Fig. 5
the data movement action Move from cloud to edge has a negative impact on Fast data



11

process while its transformation Aggregation has a positive impact, therefore, the com-
bination of the data movement action and transformation have a positive contribution
to the goal. The rationale behind this decision lays on the idea that transformations are
used to fix the weaknesses of the data movement actions, therefore, even if transforma-
tions have negative effects, such effects should never overcome the positive effects of
the whole data movement action.

Three possible outcomes are expected: (i) no movement action is selected, meaning
that the situation is so critical that none of the possible actions, that can be executed by
the data provider, can solve the violation; (ii) one movement action is selected; (iii) mul-
tiple movement actions are selected. We do not investigate further the first option since
other research work [10, 4] already faced similar problems and can be adopted as solu-
tions for this case. For the third option, the controller considers the metadata associated
to movement actions and transformations which express costs and time for enacting the
action. Indeed, when several alternative actions are available for fixing a violation, the
action selection might be led by the movement strategy selected by the customer. Two
main strategies can be expressed: (i) cost minimization strategy: the controller selects
the action that maximizes the goals satisfaction while minimizing the cost of enact-
ment; (ii) time minimization strategy: the controller selects the action that maximizes
the goals satisfaction while minimizing the time of enactment. The application of such
strategies creates a ranked list of data movement actions.

The decision on which data movement action to apply cannot been taken for a sin-
gle customer without considering other customers who concurrently access the same
data sources. Indeed, the applications sharing the same data sources interfere with each
other and a movement action might improve the QoS of one of them while negatively
affecting another one. As an example, using the traffic information DaaS, let’s consider
the situation in which to bring data about traffic in the EU zone nearer to a customer, a
movement action moves a subset of them from the cloud storage to a customer’s edge
storage. This action will improve the Fast service goal of the customer without violat-
ing the Data consistent goal. However, another concurrent application using the same
data will be affected and its Reliable service goal will be violated.

To avoid interferences, after the selection of a set of candidate actions, the controller
might check their effect on the goal trees of other customers. Each action selected is
analyzed against all goal trees related to the data source that is being moved. If in at
least one goal tree, the action negatively impacts a goal that has no positive contribution
links from other movement actions, and therefore no action can be later adopted to
restore the goal satisfaction, then the action is moved down in the ranking.

According to where the decision for each customer tree is performed, it is possible
to implement the framework in a centralized fashion (global decision and global mon-
itoring) or in a decentralized fashion (distributed monitoring and distributed decision).
The first solution is easier in terms of management but the controller is a bottleneck
since it has to manage all the customers. The second solution is more scalable but in-
troduce a higher complexity in the coordination of the movement actions.

When the best movement action is selected, the framework will ignore violations
that will be signaled in the period immediately after the enactment, in order to avoid
oscillations of data sources between two or more locations. More complex mechanisms



12

can be adopted to avoid subtler oscillations of data sources, however this is out of the
scope of the paper and will be considered for a future work.

5 Scalability Evaluation

The efficiency of our solution mainly relies on the BIM engine. Thus, an efficient de-
cision making depends on the ability of the BIM engine to produce a result in an ac-
ceptable amount of time. Being the complexity of the algorithms for the forward and
backward propagation of goal satisfaction implemented in the BIM engine depends on
the number of goals, we evaluated the response time of the BIM engine considering a
variation of goals from 1 goal to 31 goals3. The tests have been executed on a virtual
machine with 4 GB of RAM and 2 dedicated 3,3 GHz cores with Linux Ubuntu 16.04
installed. Future work will concentrate on evaluating the effectiveness of the proposed
decision making system, as the infrastructure able to move data among cloud and edge
storages is under development.

Fig. 6 shows results for the backward analysis: on the x-axis there is the number of
goals while the y-axis shows the execution time in milliseconds. The dotted line rep-
resents the linear regression, which indicates that the execution time increases linearly
with the number of nodes. The results, especially in the right side of the chart, may
appear distant from the linear regression, however, considering the scale of the chart,
the distance can be considered minimal. The maximum execution time with 31 goals is
10 milliseconds, which indicates the software returns the results almost immediately.

The scalability tests for the forward analysis return similar results in terms of exe-
cution time. In particular, the linear regression indicates that the execution time remains
almost constant. The results are not included in the paper because of lack of space.

Both tests indicate that the backward and forward algorithms are executed in few
milliseconds and, therefore, they can be integrated in the software for the decision of the
best data movement action at runtime. In order to select the best action, multiple goal
trees are evaluated, however, each tree is considered separately, therefore, the analysis
can be executed in parallel for each goal tree. Other operations will be executed for the
selection of a data movement action, such as the creation of the ranking using the data
movement strategies, or the update of the ranking based on the impact of the actions in
other goal trees. However, such operations are very fast and they do not impact on the
performance of the overall approach.

Since the measured values are very low, they may be influenced by external factors,
such as other CPU consuming operations. We solved this possible threat by executing
the test 10 times and by excluding the minimum and maximum values.

The scalability test measures the execution time of the forward and backward rea-
soning software engine, however, other factors should be considered, such as the ex-
pressiveness of the modeling language and its usability. Although BIM has been used
and validated with many case studies [9, 12] we, nevertheless, will perform empirical
experiments to evaluate our extension of BIM and the overall framework.

3 The maximum value corresponds to a binary goal tree with depth equals to 4, a size that, from
our experience, we believe is much bigger the goal model that will be used for the purposes of
this paper



13

Fig. 6. Scalability tests results

6 Related Work

Initially introduced in the telecommunication domain by Cisco [5], Fog Computing has
recently emerged as a hot topic also in the software domain, and especially for data-
intensive applications, with the goal of creating a continuum between the resources
living on the cloud and the ones living on the edge [19]. The adoption of Fog comput-
ing enables an effective data provisioning [20] as data can be moved among different
environments in a seamless way. Data movement has been widely studied from different
perspectives in the literature to try to reduce the problems arising from the management
and use of large quantities of data from different sources and represented in different
formats [2, 17]. With respect to these approaches, this paper proposes a method for
selecting which is the best one to be enacted.

Data movement is also the focus of Content Delivery Networks (CDN) with the aim
of geographically distributing a service to ensure high availability and performance.
CDNs have been evolving since their first implementation [15] and new solutions also
considers deployment on edge facilities4. The main limitation of CDNs is that resources
used for caching data are predefined and owned and managed by the provider. More-
over, the caching algorithm is only addressing performance and availability optimiza-
tion of all the users. In the proposed approach, resources are dynamic and can be also
controlled by the customers. Also, the data movement policies are driven by the require-
ments of each specific user and not by a general purpose.

Goal models are used in requirement engineering to specify the objectives of users
and applications to be designed. In this paper, we have decided to use BIM [13] as
a reference model. However, other approaches are available. In particular, the Goal-
oriented Requirement Language (GRL) [3] is a rich modeling language that covers
most of the concepts of BIM. However, GRL is a very rich language and may prevent
a correct usage of the method since many concepts of GRL are not used by our method

4 https://aws.amazon.com/cloudfront/



14

and may confuse users. We, therefore, decided to extend BIM since it contains the
minimal set of concepts needed. Yet, GRL may be considered for a future work.

The tree-like structures of goal models can be used to take decisions on which sub-
set of goals to achieve. A great variety of analyses techniques have been proposed for
analyzing goal models for this purpose [14, 16]. The satisfaction analyses propagate
the satisfaction or denial of goals forward and backward in the goal tree structure. The
forward propagation [16] can be used to check alternatives while the backward propa-
gation [21, 7, 11] can be used to understand what are the consequences of a satisfied or
denied goal. Such approaches however, were defined for other domains and, therefore,
they do not include concepts needed for this paper.

7 Concluding Remarks

This paper proposes a solution to support data provisioning based on a DaaS paradigm
in a Fog Computing environment by enabling an effective data movement among the
data storages belonging not only to data providers but also to data consumers. Data
movement is driven by a goal-based model capturing the agreement between a provider
and its customers and can be used to figure out the most suitable data movement strat-
egy. The model is enriched with data movement actions, defined and classified in the
paper. We mapped the effect of actions over goals using contribution links that enable
the method to be used at runtime for selecting the best action given a goal violation. At
this stage, the validation of the approach is limited to the analysis of scalability, which
demonstrated a linear increase of the response time with respect to the increase of the
number of goals. Additional experimentations are planned in the near future to also
demonstrate that the enactment of the data movement is able to improve the satisfac-
tion of the customer requirements. In future work, we are going to refine the existing
model by exploring the outcome of dealing with partially satisfied goals, instead of
boolean conditions, also enabling the customer to set weights indicating the most rel-
evant requirements. We are also refining the contribution links associating to them a
quantitative value expressing the expected impact of the movement on the indicators
associated to the goal, similarly to [22]. We are also going to investigate the implemen-
tation of controllers to manage multiple goal-based models for supporting multi-client
requirements satisfaction.

Acknowledgments

DITAS project is funded by the European Union’s Horizon 2020 research and innova-
tion programme under grant agreement RIA 731945.

References

1. Agrawal, D., Abbadi, A.E., Emekci, F., Metwally, A.: Database management as a service:
Challenges and opportunities. In: Proc. of IEEE International Conference on Data Engineer-
ing. pp. 1709–1716 (2009)



15

2. Amarasinghe, S.P., Lam, M.S.: Communication optimization and code generation for dis-
tributed memory machines. SIGPLAN Not. 28(6), 126–138 (Jun 1993)

3. Amyot, D., Mussbacher, G.: User requirements notation: the first ten years, the next ten
years. JSW 6(5), 747–768 (2011)

4. Aydemir, F.B., Giorgini, P., Mylopoulos, J.: Multi-objective risk analysis with goal models.
In: Proc of. Research Challenges in Information Science. pp. 1–10. IEEE (2016)

5. Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog computing and its role in the internet of
things. In: Proc. of the MCC Workshop on Mobile Cloud Computing. pp. 13–16 (2012)

6. Bouguettaya, A., et al.: A service computing manifesto: The next 10 years. Commun. ACM
60(4), 64–72 (Mar 2017), http://doi.acm.org/10.1145/2983528

7. Chung, L., Nixon, B.A., Yu, E., Mylopoulos, J.: Non-functional requirements in software
engineering, vol. 5. Springer Science & Business Media (2012)

8. D’Andria, F., Field, D., Kopaneli, A., Kousiouris, G., Garcia-Perez, D., Pernici, B., Plebani,
P.: Data Movement in the Internet of Things Domain. Springer Int.l Publishing (2015)

9. Francesconi, F., Dalpiaz, F., Mylopoulos, J.: Models for strategic planning: Applying tbim
to the montreux jazz festival case study. In: Research Challenges in Information Science
(RCIS), 2015 IEEE 9th International Conference on. pp. 229–238. IEEE (2015)

10. Gembicki, F., Haimes, Y.: Approach to performance and sensitivity multiobjective optimiza-
tion: The goal attainment method. IEEE Trans. on Automatic control 20, 769–771 (1975)

11. Giorgini, P., Mylopoulos, J., Nicchiarelli, E., Sebastiani, R.: Formal reasoning techniques for
goal models. J. Data Semantics 1(1), 1–20 (2003)

12. Horkoff, J., Barone, D., Jiang, L., Yu, E., Amyot, D., Borgida, A., Mylopoulos, J.: Strate-
gic business modeling: representation and reasoning. Software & Systems Modeling 13(3),
1015–1041 (2014)

13. Horkoff, J., Borgida, A., Mylopoulos, J., Barone, D., Jiang, L., Yu, E., Amyot, D.: Making
data meaningful: The business intelligence model and its formal semantics in description
logics. In: Proc. of On the Move to Meaningful Internet Systems. pp. 700–717 (2012)

14. Horkoff, J., Yu, E.: Interactive goal model analysis for early requirements engineering. Re-
quirements Engineering 21(1), 29–61 (2016)

15. Leighton, F.T., Lewin, D.M.: Content delivery network using edge-of-network servers for
providing content delivery to a set of participating content providers (Apr 22 2003)

16. Letier, E., Van Lamsweerde, A.: Reasoning about partial goal satisfaction for requirements
and design engineering. In: ACM SIGSOFT Soft. Eng. Notes. vol. 29, pp. 53–62 (2004)

17. Lu, P., Zhang, L., Liu, X., Yao, J., Zhu, Z.: Highly efficient data migration and backup for big
data applications in elastic optical inter-data-center networks. IEEE Network 29(5), 36–42
(2015)

18. MacKenzie, C.M., Laskey, K., McCabe, F., Brown, P.F., Metz, R.: Reference model for ser-
vice oriented architecture 1.0. Tech. rep., OASIS (2006)

19. OpenFog Consortium Architecture Working Group: OpenFog Architecture Overview
(February 2016), http://www.openfogconsortium.org/ra

20. Plebani, P., Garcia-Perez, D., Anderson, M., Bermbach, D., Cappiello, C., Kat, R.I., Pallas,
F., Pernici, B., Tai, S., Vitali, M.: Information Logistics and Fog Computing: The DITAS
Approach. In: Proc. of the Forum and Doctoral Consortium at CAISE 17. pp. 129–136

21. Sebastiani, R., Giorgini, P., Mylopoulos, J.: Simple and minimum-cost satisfiability for
goal models. In: Proc. of Int. Conference on Advanced Information Systems Engineering,
Springer, Berlin, Heidelberg. pp. 20–35 (2004)

22. Vitali, M., Pernici, B., O’Reilly, U.M.: Learning a goal-oriented model for energy efficient
adaptive applications in data centers. Information Sciences 319, 152–170 (2015)


