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Abstract. From the cloud provider perspective, applications are usually black
boxes hosted on Virtual Machines. Managing these black boxes without knowing
anything about the features of the workload can generate inefficiencies in the per-
formance. In fact, this information can be relevant to take deployment decisions
which consist both in considering the interferences between applications with
similar resources demands and predicting future peak demands avoiding perfor-
mance degradation. Monitoring applications in cloud facilities and data centers
is the only approach to manage and ensure the performance level of the hosted
applications. This paper considers applications as black boxes and, using mon-
itoring data analysis of the VMs on which applications are running, provides
a methodology for building an application profile reflecting relevant behavioral
features of a VM. This information is precious to lead deployment and adaptive
decisions in data center management. The approach is validated on a real moni-
toring data set of an Italian data center.
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1 Introduction

Cloud computing helps achieving high-performance levels in enterprise applica-
tions for a potentially lower cost than traditional ways. Application deployed using the
Infrastructure as a Service (IaaS) paradigm can take advantage of the scalability and
agility of the cloud to meet variable workload demands and to improve overall avail-
ability. Most of the applications running in a cloud infrastructure are black boxes for the
cloud provider, which is not aware of what the application does and doesn’t have any
clue on the expected behavior and resource demand. The only knowledge on the appli-
cation is obtained by the configuration and monitoring of the Virtual Machines (VMs)
hosting it. Taking decisions on application deployment and migration is not easy in
this blind situation. In fact, deployment should take into consideration the resources
required by the application and possible interferences with other applications hosted
on the same physical machine. The lack of knowledge about the application behavior
usually results in a waste of computational power: servers are usually under-loaded to
avoid performance issues in case of a peak load. Currently, the cloud service model has
been flanked by the edge paradigm, in which applications are executed as near as pos-
sible to the final customer or to where the data that they have to analyze are collected.



This is possible as far as enough computational resources are available in such limited
devices. In this context, knowing the expected behavior of an application is even more
crucial than in the cloud scenario. In fact, a wrong decision can affect the experienced
quality of service.

In this paper, we propose a methodology for building an application profile from
the data collected by the monitoring system during the application execution on a VM.
The aim of the profile is to capture the dynamic behavior and resources intensity of an
application hosted on a monitored VM. Having this information can be helpful to attain
several objectives: supporting deployment decisions, detecting anomalies, and classify-
ing homogeneous VMs in terms of resource usage and patterns of usage in time. The
profile proposed in this paper takes into consideration two main aspects: (i) intensive-
ness in resource usage of the VM and (ii) periodicity of the VM behavior. We base
the analysis on monitoring data of typical indicators for data centers, extracting VMs
profiles and developing techniques to analyze them.

The paper is structured as follows. In Sect. 2, we discuss related work on monitoring
and profiling applications and virtual machines in data centers and on analyzing peri-
odic behaviors in general. In Sect. 3, we outline the method for analyzing VM profiles,
then detailing its steps in Sect. 4 and Sect. 5. Finally, in Sect. 6, we analyze in detail the
characteristics of VMs in a real data center, exploiting the proposed VM profiles.

2 Related Work

The management of data centers is a complex task that is getting more and more chal-
lenging with the increase of the heterogeneity of both the infrastructure employed in
most of the data centers (old and new generation servers) and of the applications hosted
by the infrastructure. In order to provide a reliable management, the monitoring sys-
tem plays a key role since it collects all the information needed to detect issues and
to ensure the required performance levels. However, the big amount of data collected
and its complexity can make this fundamental task difficult. In [1] the authors analyze
the issue of cloud monitoring, focusing both on its challenges and its properties, stat-
ing the important role that monitoring systems have nowadays in such an environment.
In [4], different cloud monitoring solutions are compared. Monitoring is often associ-
ated with data analytics since it enables the extraction of relevant information from the
collected data. As described in [22], this task can be expensive and time-consuming
and a trade-off between benefits and costs has to be analyzed. The issue of managing
the big amount of monitoring data in a scalable way is faced in [7], where the authors
propose an innovative data warehousing system for performance-related information.
Monitoring information can be also addressed to improve the energy efficiency and the
sustainability of clouds and data centers [17]. In projects like the European FP7 project
ECO2Clouds1, the issue of sustainability has been managed with an adaptive approach
basing decisions about application deployment on the data retrieved with the monitor-
ing system [21, 3]. Finally, in [5] the authors propose a method to optimize application
deployment based on the maximization of the quality and completeness of information
gathered by the monitoring system in a multi-cloud environment.

1 http://eco2clouds.eu
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Many researches exploited the monitoring data to model the application, the VMs,
and the physical machine behavior profile. In those profiles, multiple monitoring dimen-
sions are involved, including mostly CPU, memory usage, IO, and network usage, and
sometimes also power and temperature are considered for energy efficiency and ther-
mal awareness[23, 9]. Various metrics are carried out to measure specific properties. For
instance, [16] measures average disk writes per second, [10] measures the percentage
of CPU time occupied by the process of user state. Some work [14, 8] use the profiles
directly to estimate resources demands and support decision making, but other work
try to go a step further. In [12], authors analyze sensitivity of VMs to cloud resources
(CPU, Memory, and Storage) in order to profile the application behavior under inten-
sive workloads. In [11], authors map the VM profile to an execution state space and
use this to interpret state transitions of co-located VMs. A penalty-based profile match-
ing algorithm (PPMA) is developed in [15] to obtain an assignment solution, which
gives near-optimal allocations whilst satisfying energy-efficiency, resource utilization
efficiency and application completion time constraints. The methodology is based on
the strong assumption of a stable workload. Most research takes the profile as an instant
screen shot of the system, rather than an aspect of self-repeatable and stable normality
of the system. The authors of [24] exploit recurring patterns to estimate future resource
consumption for VM consolidation. But their method assumes the behaviors of all VMs
in all dimensions are 100% periodic, which is generally not true. Another focus of the
VM behavior profile is to analyze the performance bottlenecks. For instance, the mem-
ory used in system buffers can help measuring memory intensiveness [2], the number
of interrupts per second can help measuring CPU intensiveness [10], throughput can be
used to evaluate the performance of applications [13]. These approaches analyze only
simple benchmark applications under pre-defined workloads.

In this paper we claim that periodicity of VMs is a relevant information for data
center management. The two most common used functions to measure periodicity of
a signal are Periodogram and ACF (auto-correlation function). Periodogram function
analyzes the signal in frequency domain using the Discrete Fourier Transforms (DFT).
However, considering the increasing size of DFT, the resolution of Periodogram be-
comes very coarse for longer periods. Due to this reason, detecting large periods with
Periodogram can be very inaccurate, sometimes false alarms are raised because of the
absences of power in the DFT bin. ACF examines how similar a sequence x is to its
shifted (lagged) copies for different t lags, calculating the auto-correlation with the se-
quence itself. In the auto-correlation graphs, multiples of the same basic period also
appear as peaks. Therefore, the method introduces many false alarms that need to be
eliminated in a post-processing phase. As both functions have some deficiencies in de-
tecting periodic behaviors of VM indicators in isolation, in the following of the paper
we base our work on a fusion method of the two above-mentioned functions, which has
been proposed by [18].

3 Profiling Methodology

In this section, we illustrate the proposed method for deriving and analyzing VM pro-
files in data centers. The methodology is illustrated in Figure 1, which describes the
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Fig. 1. Method for profiling VMs

process through which the monitoring data are transformed into VM profiles for sin-
gle VMs and how the profiles are used to detect similarities between VMs. The figure
shows the main data items and the connecting edges are labeled with the transformation
steps. We assume to have a monitoring system able to collect information on the VMs
behavior and store them in a monitoring database. To build the profile, we extract the
raw data from this database for each of the VMs that we want to analyze.

Two parallel analyses are performed to build the profile: (i) Resource intensiveness
analysis - the data collected through the monitoring system are analyzed in order to as-
sess the intensiveness of the VM according to the resource consumption; (ii) Indicator
Periodicity - collected data are used to assess if a periodic behavior in the resource us-
age of the VM can be detected. Combining together the characteristics analyzed above,
we build a VM profile which describes resources characteristics Intensiveness and Pe-
riodicity of the VMs, for all relevant indicators. In the following, we illustrate the two
steps for building the VM profile, analyzing the intensity of resources in Sect. 4, then
defining periodicity in Sect. 5.

We study VMs through the performance indicators recorded by the monitoring sys-
tem, and in particular, we focus on four indicators: (i) CPU , (ii) MEM , (iii) BW ,
and (iv) IO. These indicators are available in most monitoring systems and are gener-
ally used to analyze VMs in data centers [21]. We illustrate two examples of profile for
two VMs, denoted as A12 and C3, in Fig. 2, which shows intensiveness and periodic-
ity (with associated periods and strength) for the considered indicators. The periodicity
contains also the patterns for the periodic indicators, as shown in Fig. 3 for the CPU
weekly pattern of VM C3.
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Fig. 2. Example profiles of two VMs

Fig. 3. CPU weekly pattern of VM C3

4 Profiling Intensity of Application Usage of Resources

In this section we discuss the methodology used to detect the intensiveness of applica-
tions according to their resource usage. The VM profile includes resources usage char-
acteristics of VMs, in order to be able to identify the specific resources that can limit
VM performances. The aim is to find relevant resources for the applications running on
the VM, enabling us to prevent shortages of these resources and improve performance.
Existing methods for detecting intensiveness are based on the knowledge of the appli-
cations running on the VMs. As an example, in [12] the authors provide a methodology
to extract the profile systematically. The authors stress the different system components
and, as a result, associate tags to the applications: CPU-intensive, MEM-intensive, disk-
intensive, and so on.

If information about applications is not available, which is the case for our scenario,
we can only mine the historical resource usage from monitoring data on VMs to de-
rive the resource intensiveness. For each resource of a specific VM we propose three
candidate metrics as follows:

– avg: the average resource usage of all the samples in the dataset;
– pwarning: the percentage of samples of a specific resource which exceed a given

threshold thwarning;
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– pcritical: the percentage of samples of a specific resource which exceed a given
threshold thcritical.

The avg metric takes all samples into consideration while the pwarning and pcritical
only consider stressful situations of the resource. Therefore, pwarning and pcritical fo-
cus on the crucial moments when a resource becomes a bottleneck for the VM per-
formance. This is important for CPU and memory since the shortage of these resources
might cause inefficiency and QoS failures in a very short time. To get appropriate thresh-
olds for thwarning and thcritical, we refer to the literature of data center management
practice. The Data Center Maturity Model (DCMM) [6] is a reference to evaluate the
maturity of individual data centers. It suggests best practice according to the level of
maturity that the data center aims at achieving. The highest maturity level (called “Vi-
sionary”), which should be reached in the next five years, requires the average monthly
CPU utilization above 60%. Another reference for setting thresholds for the VM CPU
and memory usage is the VMware Knowledge Base [19, 20]. According to this source,
the CPU is considered in a warning condition if its usage is above 75% and in an alarm
condition if its usage is above 90% for 5 minutes. Similarly, the memory warning con-
dition sets a threshold of 85%, while an alarm condition is detected if the resource usage
is above 95% for 10 minutes.

According to intensiveness, we intend to classify the VMs into three groups (inten-
sive, medium-intensive, and non-intensive), and also to define the conditions to place
a VM in these groups. Since thresholds can change according to the specific scenario,
we can choose thresholds for each resource starting from the thresholds values men-
tioned above. For the network bandwidth BW and IO, unlike for CPU and MEM, the
immediacy of handling stress peaks is usually not emphasized in the literature, if only
the VM can finish its work smoothly. Therefore, the intensiveness of BW and IO are
mainly relying on the total resource demands, but not only on the stressful demands
peaks. We will therefore base the intensiveness analysis on the average consumptions
of VMs, grouping them in three groups with homogeneous characteristics, to define
intensive, medium-intensive, and non-intensive characteristics. A detailed example of
intensiveness analysis in a real data center can be found in the case study discussed in
Sect. 6.1.

5 Profiling Application Periodicity

5.1 Identifying periods

The goal of this step is to identify periods for the indicators. In real data centers, noises
makes detecting the periodic behaviors of VMs a hard job. We exploit the mechanism
described in [18] to filter insignificant periods of the VMs indicators, ensuring that
we are analyzing VMs excluding noises. As discussed in Sect. 2, both ACF and Peri-
odogram functions can examine periodic signals, but the detected period accuracy and
the false positive rate could be a problem if we adopt these techniques separately, so,
following their proposal, this work exploits both functions sequentially to identify the
true and precise periods. Fig. 4 illustrates the methodology which is proposed by [18]:
first, the Periodogram is used to extract period candidates, and then ACF is applied
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Fig. 4. Period Detection methodology [18]

to validate those candidates. More specifically, if the candidate period from the Peri-
odogram lies on a hill of ACF, it can be inferred that a peak of ACF is nearby which
confirms the validity of the period (valid period), otherwise, if the Periodogram falls
in a valley of ACF it is discarded as a false alarm. Finally, the ACF peak nearer to the
Periodogram position is taken as the true period, refining the candidate period.

In this step, we analyze the data gathered by the monitoring system for each VM
in order to build the periodicity part of its profile. For each of the selected indicators,
the periodicity is detected using the described approach. Fig. 5 gives an example. The
original data shows CPU usage of a VM in almost 100 days. We can observe obvious
daily peaks and a weak weekly pattern. Thus we expect the periodicity to be 1 day and
7 days. In periodicity analysis, we focus on peaks of Periodogram which indicate their
periodic strength, and select k candidate frequencies by filtering with their power and
distances between them. For simplicity of the graph, we take k = 3 in this example.
Then we map candidate frequencies to periods (namely, 0.3 days, 1 day and 7.2 days),
and by verification of ACF, we take 1 day and 7.2 days as valid periods, but discard
the 0.3 days as a false alarm because it is a valley in ACF diagram, according to the
methodology of [18]. Following the procedure described above, we refine the 7.2 day
period to the corresponding hill peak of ACF, namely, 7 days.

It is useful to analyze and compare behaviors characteristics of different indicators.
Referring to Fig. 2, we see that for VM A12 most of the indicators are periodic, except
for bandwidth. However, the periods are different: CPU and memory have daily periods,
while IO has a weekly period.

5.2 Establishing periodic patterns

Detecting periodicity of a VM is not enough to represent its behavior. For having a
deeper knowledge it is also important to represent how the VM behaves in this peri-
ods according to resources demands. Each valid period, identified in the previous step,
corresponds to a periodic behavior of a VM indicator, namely, a pattern, which repeats
itself through the considered time interval for the analyzed VM. For instance, as a result
of human activities characteristics, most applications on the cloud have daily, weekly,
or yearly workloads patterns (although other periods can be significant in some cases),
so that we can find these patterns on most VM indicators. The pattern is essential to
understand VM behavior and it provides the possibility to predict and optimize VM
resources demands in data centers.

Once the relevant periods for each indicator of a VM have been detected, we can
move to the analysis of the periodic behavior by considering the raw data. The goal
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Fig. 5. Detecting periods of CPU for VM C3

is to build a typical shape for the considered signal. In order to do so, the continuous
indicators are first cut into several segments, where each segment is as long as the re-
fined period, representing an instance of the repeating behavior. Then for every time
stamp in this period, we take the average of all instances to construct a pattern describ-
ing usual behavior in this period. Taking the VM in Fig. 5 as an example, we build
the weekly pattern and observe clear differences between workdays and weekends, as
Fig. 3 depicts.

6 Profiling of Virtual Machines in a Real Data Center

In the previous sections, we illustrated the method to derive application profiles, and
in this section, we derive and analyze the profiles to understand behaviors of VMs in a
data center using a private cloud. The considered dataset, from a real data center of a
telecommunication company in Italy, consists of the monitoring data of 304 VMs, and
all indicators were sampled simultaneously with a sampling interval of 5 minutes. The
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indicators include the usage of multiple resources of VMs and hosts, covering CPU,
memory, bandwidth and I/O, and so on. On the other hand, the dataset contains no
information about the applications so that we do not know what kind of applications
are running on the VMs and what is the performance of the applications. The data
used in this paper cover the period of 3 months. All the steps of the profiling method
discussed in Sect. 4 and Sect. 5 are validated with this dataset.

6.1 Intensiveness validation

Using the available historical monitoring data of the real data center, we have analyzed
the intensiveness of resource usage for each VM considering the four main resources:
CPU, memory, bandwidth, and IO. The results of the analysis are shown in Fig. 6 in
which on the x-axis we represented each VM in the test bed (with the VMs arranged in
a descending order) and on the y-axis we draw the normalized value of the metrics of
the VM. As already discussed in Sect. 4, the average value is the only information used
for evaluating the intensiveness of the VMs for the bandwidth and IO metric, while the
pcritical and pwarning metrics are used for CPU and memory. To analyze our dataset, we
applied the thresholds for CPU and memory intensiveness indicated by VMware [19,
20] as a starting point. Thresholds are set as follows: (i) thwarning(CPU) = 75%; (ii)
thcritical(CPU) = 90%; (iii) thwarning (MEM) = 85%; (iv) thcritical(MEM) = 95%.

Looking at the results shown in Fig. 6, we classified the VMs into three groups,
namely, intensive VMs, medium-intensive VMs, and non-intensive VMs. According to
the values of the four metrics, we identify the conditions of groups for each of them.
Considering the CPU usage, only the VMs for which pwarning(CPU) > 10% are
classified as CPU-intensive, because the average CPU usage of this group of VMs is
significantly higher (e.g., the avg(CPU) is mostly larger than 50% for this group).
VMs are considered non-intensive in relation to CPU if they never exceed the warning
threshold (pwarning(CPU) = 0%). This group contains the most of the VMs analyzed
and they are characterized by a low average CPU consumption (most of these VMs
have avg(CPU) < 30%). Finally, other VMs with 0% < pwarning(CPU) ≤ 10%
are classified as medium-intensive in CPU usage. Thus, we have defined the conditions
of CPU intensiveness over the metric pwarning. As an alternative to exploiting only
pwarning to classify the groups, we also considered to use the values for pcritical and
avg to build alternative conditions (e.g., a VM is intensive if pcritical(CPU) > 10%
and avg(CPU) > 60%). We choose pwarning because it is a mixture of the other
two metrics, and its behavior is more suitable to classify VMs into the 3 intensiveness
groups. Similarly, observing Fig. 6(b) we selected as threshold for memory intensive-
ness pwarning(MEM) > 90%. As a result of this threshold, we classified 75 VMs as
memory intensive, since they exceed this threshold for most of their lifetime. We also
classified as non-intensive memory group the VMs with pwarning(MEM) ≤ 10%,
since their average consumption of MEM is generally below 80% and they seldom ex-
ceed the warning threshold. As a result, medium-intensive VMs for memory are the
VMs with 10% < pwarning(MEM) ≤ 90%. As discussed in Sect. 4, we use only avg
to evaluate intensiveness for IO and bandwidth. As shown in Fig. 6(c) and Fig. 6(d),
most VMs use the network and IO rarely, only a small number of VMs use the network
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(a) CPU in descending order of pwarning (b) MEM in descending order of pwarning

(c) BW in descending order of avg (d) IO in descending order of avg

Fig. 6. Intensive metrics for VM indicators

Table 1. Conditions of resource intensiveness groups

CPU MEM BW IO

Intensive pwarning > 10% pwarning > 90% avg > 2% avg > 2%

Medium-
intensive

0% < pwarning ≤ 10% 10% < pwarning ≤ 90% 0.6% < avg ≤ 2% 0.4% < avg ≤ 2%

Non-
intensive

pwarning = 0% pwarning ≤ 10% avg ≤ 0.6% avg ≤ 0.4%

or IO occasionally, and some of them use the network or IO extremely frequently. Based
on the shape of avg we define the thresholds for CPU, MEM, IO, and BW as in Tab. 1.

Using the discovered thresholds, it is possible to detect the intensiveness of each
VM in the dataset. As an example, for the two VMs considered in Fig. 2, we evaluated
the intensiveness metrics and derived intensiveness as shown in Tab. 2

6.2 Analysis of application periodicity

The second step for building the profile of a VM consists in evaluating the VM peri-
odicity. We computed the periodicity profiles of VMs in the data center as illustrated
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Table 2. Intensiveness of two VMs

VM id A12 C3

Metric Intens. p_warning p_critical avg Intens. p_warning p_critical avg

CPU not-int. 0.04% 0.03% 28.77% medium 4.07% 1.58% 26.38%

MEM non-int. 4.40% 1.83% 74.05% non-int. 9.28% 0.00% 78.71%

BW non-int. – – 0.48% medium – – 0.96%

IO medium – – 0.83% non-int. – – 0.38%

(a) CPU (b) MEM

(c) BW (d) IO

Fig. 7. Period occurrences (normalized) over four indicators

in Sect. 4. As a result, we detected that: (i) 275 VMs have some CPU-periodic be-
havior; (ii) 278 VMs have some memory-periodic behavior; (iii) 223 VMs have some
BW-periodic behavior; (iv) 227 VMs have some IO-periodic behavior. Using the peri-
odicity profiles, we can also extract a general overview of the VMs periodicity of the
data center, summarizing the occurrence of periods for each indicator and showing the
distribution of periods for each indicator as shown in Fig. 7. For an easier comparison
of the different cases, the number of occurrences is given in terms of percentages in the
figure.

The two most common periods for all indicators are the daily period and weekly
period, this conforms to the reality as most application workloads are daily or weekly
periodic. It can also be noticed that periodicity varies for different indicators. From the
IO perspective, more than half of VMs have a daily period, and more than 25% of VMs
are weekly periodic. This characteristic may relate to the daily/weekly dumps of some
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Fig. 8. Resources usage characteristics of the data center

applications (in this case we see peaks of high values for BW/IO weekly, for a short
time, and mainly in the weekend and at night. The BW of the data center is very similar
to the IO behavior: This similarity can be explained because most IO activities generate
or are generated by network transmissions. The CPU periodicity is also strong, with
almost 70% of the VMs with a daily and 50% with a weekly periods. However, the
MEM behaves differently: the daily/weekly periods are no longer stand-out compared
to others. The possible reason might be that the memory demands of most applications
are generally very static and the periodicities are not significant.

6.3 Relating VMs behavior to VM profiles

We analyze the behavior of the profiles of the 304 VMs of the analyzed data center, and
we compare periodicity characteristics with the intensity of resources. We have also
analyzed the correlation between the resource intensiveness and the VMs migrations
observed in the data center2.

Periodicity and resource usage relation In this section, we analyze the characteristics
of resources consumption on both periodicity and intensiveness, and try to find if there
is a relation between them. We calculate the percentage of VMs that are daily-periodic
and the percentage of VMs that are intensive for certain resources, as Fig. 8 depicts.
The percentage of VMs having a daily periodicity is very high in this data center, espe-
cially for CPU, where more than 70% of VMs are daily periodic. The overall resource
intensiveness in the data center is limited (below 30% for all the resources). The most
intensive resource is memory. As can be observed, there isn’t a strong relation between
intensiveness and periodicity for a given resource. A possible reason could be that the
periodic behaviors are easier to predict thus the administrator can prevent the intensive
situations better compared to the non-periodic behaviors.

We have also analyzed the combined characteristics of multiple resources, for both
periodicity and intensiveness. For the sake of brevity, we focused on CPU and memory.
Fig. 9 depicts the relation between CPU and memory periodicity and intensiveness.
As can be observed in Fig. 9(b), most VMs are either non-intensive to CPU or non-
intensive to MEM, only 13 VMs are intensive for both CPU and MEM. This may help

2 Information on migrations is available in the monitoring data of the data center.
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(a) periodicity (b) intensiveness

Fig. 9. Periodicity and intensiveness situations over CPU and MEM

(a) VMs movements for intensive groups (b) VMs movements for different intensive-
ness groups

Fig. 10. Impact of resource intensiveness on VM migration

us to understand the critical situations in the data center, and the administrator needs to
be careful with those 13 VMs.

Impact of resource intensiveness on VM migration In data centers, moving VMs
between different physical servers is common practice, which can improve the total
efficiency of resources utilization and decrease power consumption. Usually, a VM is
moved to a new host in two situations: (i) the server hosting the VM is overused; (ii)
the server hosting the VM is underused.

In order to validate our intensiveness metric, we extracted the events of VM move-
ments from the dataset, and analyze the relations between the VM migrations and its
resource intensiveness. Fig. 10(a) depicts the percentage of VMs migrated grouped for
intensive resource. As can be seen in the first column, most VMs (more than 60%) have
never been migrated during the analyzed period of 3 months. However, the intensive
VMs have a higher probability to be migrated, regardless of which is the intensive re-
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source. The CPU intensiveness is the most important factor for VM movements: 75%
of CPU-intensive VMs have been migrated at least once in this period. A more detailed
analysis is summarized in Fig. 10(b).

7 Conclusions and Future Work

This paper introduced a systematic method to build profiles of VMs in data centers, fo-
cusing on their resource intensiveness characteristics and on their periodic behavior. In
the paper, we have defined a VM profile as composed of two main part: (i) the resource
intensiveness in which for each resource (CPU, memory, bandwidth, IO) the level of
intensiveness has been evaluated, and (ii) the resource periodicity in which the peri-
odic behavior of each resource is analyzed and described. Applying the methodology
for building the profile of VMs to the monitoring data of a real data center, we have
demonstrated that the intensity of resource usage and periodicity are important features
in the identification of a VM profile. We have also discussed the relationships between
intensity and periodicity and the relationship between intensity and VM migration de-
cision in the studied date set, retrieving that intensive use of resources, especially CPU,
can be a driver for migration.

In future work we envision to exploit the VM profile for further analysis tasks,
such as resource planning, enabling better VM placements and migrations, anomaly
detection, and to support the analysis of the periodicity of bursts.
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