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Abstract: Data-intensive applications are nowadays crucial in several domains: 
e.g., e-health, smart cities, industry 4.0. In fact, the significant increase of sensor 
deployment, in conjunction with the huge amount of data that users are producing, 
especially with their smartphones, requires proper data management. The goal of 
this paper is to focus on how to improve data management when data are produced 
and consumed in a Fog environment, where both resources at the edge of the net-
work (e.g., sensors and mobile devices) and resources in the cloud (e.g., virtual 
machines) are involved and need to operate seamlessly. Based on the approach 
proposed in the European DITAS project, data and computation movement be-
tween the edge and the cloud is studied, to balance between such characteristics as 
latency, response time - better supported when data are stored on edge-located re-
sources - and scalability, reliability – better supported when data live in the cloud. 
To enable data and computation movement, an approach based on the principles 
of Service Oriented Computing applied to a Fog environment has been adopted.  
Keywords: Data-intensive application, Service Oriented Computing, Data 
movement, Computation Movement, Containerized applications, Virtual Data 
Container. 
1.1 Introduction 

In various fields, the amount of data produced and processed is ever increasing 
and applications able to manage this vast amount of data are required. Scientific 
disciplines, such as bioinformatics or astrophysics, have already encountered this 
data deluge several years ago and have recognized the data-intensive science as 
the fourth research paradigm in addition to the experimental, theoretical, and sim-
ulation-based paradigms [1,2]. For this reason, parallel computing, even based on 
specialized hardware - and where scaling-out approach was preferred to a scaling-
up approach - has been adopted to produce tools for improving the efficiency of 
scientific computations. 

With the proliferation of smart devices, the same type of scenario is turning up 
in other domains. Predictions on IoT estimate 32 billion of connected devices in 
2020 that will be able to produce 440 Petabytes (accounting for 10% of the world 
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data) [3]. On top of these data, data processing and analysis is required to extract 
meaningful information. This becomes crucial when data comes from the opera-
tional infrastructure of a large company and analysis is required to compute KPIs, 
produce reports for the management, and, thus, for driving strategic decisions. 
Combining this complexity with the need for being faster in management deci-
sions, real-time processing of data streams becomes fundamental [4].  

In cloud platforms, these data-intensive applications (DIA) have found the ideal 
environment for executing tasks and processing significant amounts of data while 
scalability and reliability are guaranteed by the underlying infrastructure [5]. Fur-
thermore, the adoption of cloud solutions has had a significant impact on costs, as 
storing and managing data in the cloud is typically inexpensive compared to on-
premises solutions. The development of this type of application took advantage of 
several approaches that had been proposed in the recent years. Especially inside 
the Apache community[6], several projects have been started to deal with batch 
processing, e.g., Hadoop, and real-time processing, e.g., Storm, Spark, or Kafka, 
just to name a few. With these tools, data-intensive application developers can rely 
on a specific programming model that simplifies access to heterogeneous data 
sources storing data in different formats and significantly reduces the effort re-
quired to make data processing scalable and reliable. To reduce the inherent laten-
cy of the cloud, specific architectures, e.g., the Lambda Architecture [7], have 
been proposed for real-time analytics. 

Although these approaches are now widely adopted, there are situations in 
which relying on a cloud infrastructure for implementing data-intensive applica-
tions is not beneficial, especially when data are produced outside of the cloud by 
devices (e.g., smart objects, laptops, servers, dedicated systems) living on the 
premises of who wants to analyse the data produced. Firstly, when data are pro-
duced at the edge of the network but processed in the cloud using the solutions 
mentioned above — bandwidth could become a bottleneck thus increasing the la-
tency. Secondly, security and privacy issues are still one of the main reasons why 
cloud adoption remains limited especially in application domains where data pro-
cessing mainly involves sensitive information (e.g., e-health) that usually cannot 
be moved to the cloud as they are. On the other hand, applying the data processing 
solutions developed for cloud-based infrastructure directly to the edge could be 
very challenging: each infrastructure has its own characteristics, could be man-
aged differently, and involve a variety of devices with different characteristics that 
make a one-size-fits-all approach really difficult. 

In such a scenario, Fog Computing [8], often also referred to as Edge Compu-
ting [9], is an emerging paradigm aiming to extend Cloud Computing capabilities 
to fully exploit the potential of the edge of the network where traditional devices 
as well as new generations of smart devices, wearables, and mobile devices -- the 
so-called Internet of Things (IoT) -- are considered. Especially for data-intensive 
applications, since IoT is a source for enormous amounts of data that can be ex-
ploited to provide support in a multitude of different domains (e.g., predictive ma-
chinery maintenance, patient monitoring), this new paradigm has opened new 
frontiers [10]. In fact, with Fog Computing we can take advantage of resources 
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living on the edge and the cloud to exploit the respective advantages. Data could 
be stored closer to where they are produced using edge located resources if the da-
ta cannot leave the boundary of the organization that owns them; conversely, 
cloud solutions could be adopted only after data are transformed to preserve priva-
cy. Orthogonally, data processing could occur on the edge when the available in-
formation, computational power, and the response time do not require a scalable 
solution. On the other hand, data processing will be moved to the cloud when limi-
tation of network bandwidth is not an issue.  

The goal of this paper is to introduce how data management in data-intensive 
applications could be improved through data and computation movement in Fog 
environments. In particular, this paper focuses on the experience of the European 
DITAS project [11] which aims to improve, through a combined cloud and fog 
platform, the development of data-intensive applications by enabling information 
logistics in Fog environments for delivering information at the right time, the right 
place, and with the right quality [12] using both resources belonging to the cloud 
and the edge. The resulting data and computation movement is enabled by Virtual 
Data Containers (VDCs) which provide an abstraction layer, adopting the Service 
Oriented Computing [13] principles and hiding the underlying complexity of an 
infrastructure made of heterogeneous devices. Applications developed using the 
DITAS toolkit will be able to exploit the advantages of both cloud-based solutions 
in terms of reliability and scalability, as well as edge-based solutions with respect 
to latency and privacy. 

The rest of this paper is structured as follows. Section 1.2 introduces the char-
acteristics of data-intensive applications when immersed in a Fog Computing-
based environment. Section 1.3 discusses the approach adopted in the DITAS pro-
ject to support the deployment and execution of a data-intensive application in Fog 
environments, while Section 1.4 specifically focuses on the data and computation 
movement actions. Finally, Section 1.5 discusses related work, while Section 1.6 
concludes the work outlining the future work which DITAS will focus on. 
1.2 Data intensive applications in Fog Computing 

Data-intensive applications are becoming more and more crucial elements of IT 
systems due to the ever-increasing amount of data that needs to be managed. Sev-
eral types of data-intensive applications can be developed to cover one or more 
phases of the data management, i.e., data capture and storage, data transmission, 
data curation, data analysis, and data visualization [5]. 

In recent years, usually under the umbrella of Big Data, researchers and practi-
tioners have focused on providing tools, methods, and techniques for efficiently 
managing extensive amounts of data in various formats and schemas. As a result, 
distributed file systems (e.g., HDFS), new generations of DBMS where the rela-
tional model is no longer adopted (e.g., MongoDB [14], Cassandra [15]), and new 
programming models (e.g., MapReduce), as well as new architectures (e.g., 
Lambda Architecture) have been proposed. Regardless of the specific solution, 
most of them usually rely on resources available on the cloud, thus offering the 
possibility to easily scale applications in or out with the amount of data to be pro-
cessed. Actually, in some cases, relying only on cloud infrastructures cannot be 
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feasible for two main reasons: (i) data cannot be moved from where they are col-
lected due to privacy/security issues, and (ii) the time required to move data to the 
cloud could be prohibitive. In such a scenario, Fog Computing [7] aims to support 
the required synergy between the cloud - where the application usually runs - and 
the devices at the edge of the network - where the data are generated - especially 
in IoT environments. In fact, cloud and edge are usually seen as two distinct and 
independent environments that, based on the specific needs, are connected to each 
other to move data usually from the edge to the cloud. To create a synergy be-
tween these two paradigms, Fog Computing has been coined - initially in the telco 
sector - to identify a platform able ``to provide compute, storage, and networking 
services between cloud data centers and devices at the edge of the network'' [16]. 
Based on this, and also in the light of the definition proposed by the OpenFog 
Consortium [8], we consider Fog Computing as the sum of Cloud and Edge Com-
puting where these two paradigms seamlessly interoperate to provide a platform 
where both computation and data can be exchanged in both downstream and up-
stream direction [17] (see Figure 1).  
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Figure 1 – Fog Computing environment 
 
 

Based on these definitions, Cloud Computing is mainly related to the core of 
the network, whereas Edge Computing is focused on supporting the owners of re-
sources through the local 'in-situ' means for collecting and pre-processing data be-
fore sending it to cloud resources (for further utilization), thus addressing typical 
constraints of sensor-to-cloud scenarios like limited bandwidth and strict latency 
requirements. Furthermore, cloud resources include physical and virtual machines 
which are capable of processing and storing data. On the other hand, smart devic-
es, wearables, or smartphones belong to the set of edge-located sources. While 
Cloud Computing is devoted to efficiently managing capabilities and data in the 
cloud, Edge Computing is focused on providing the means for collecting data 
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from the environment (which will then be processed by cloud resources) to the 
owner of the available resources. 

Exploiting the Fog Computing paradigm, these two environments seamlessly 
interoperate to provide a platform where computation and data can be exchanged 
in both downstream and upstream direction. For instance, when data cannot be 
moved from the edge to the cloud, e.g., due to privacy issues, then the computa-
tion is moved to the edge. Similarly, when there are insufficient resources at the 
edge, data are moved to the cloud for further processing. The DITAS project 
wants to provide tools, specifically designed for developers of data-intensive ap-
plications, which are able to autonomously decide where to move data and compu-
tation resources based on information about the type of the data, the characteristics 
of applications as well as the available resources at both cloud and edge locations 
along with application constraints such as the EU GDPR privacy legislation [18]. 

To achieve this goal, DITAS adopts Service Oriented Computing principles 
[13] where data used by data-intensive application developers are provided 
through the Data as a Service (DaaS) paradigm. As shown in Figure 2, we assume 
the existence of several data providers which take care of optimizing the data col-
lection and provisioning. Data sources could be deployed on the edge (e.g., data 
coming from sensors) or on the cloud (e.g., data about business transactions). The 
goal of the data provider is to develop and deploy a DaaS which hides the com-
plexity of managing his/her data sources and to provide them through APIs. Such 
APIs are used by data consumers that, in our scenario, are represented by data-
intensive application developers which process the obtained data in order to gen-
erate added-value applications. 

Focusing on these two main standpoints, the next paragraphs focus on how 
Service Oriented Computing can be adopted in a Fog environment. 
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Figure 2 : DITAS Approach 
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1.2.1 Data provisioning 
With respect to the typical data management life-cycle, data providers are usu-

ally in charge of collecting, storing, and supporting access to data over which they 
have complete control. For instance, in IoT scenarios, data are generated at the 
edge of the network (e.g., sensors, mobile devices) and the data provider has to 
setup an environment allowing the data consumers to properly access them.  This 
requires moving the data to the cloud, where a seemingly unlimited amount of re-
sources is available for efficient storage and processing of data as well as exposing 
it through APIs. Although cloud resources ensure high reliability and scalability, 
network capacity might negatively influence latency when data movements among 
resources on the cloud and the edge occur, thus, the advantage of the fast pro-
cessing at the cloud might be wasted and the offered service quality might be neg-
atively affected. 

As an example, a data provider could be a highway manager that offers data 
about the status of the traffic, or time series about the number of vehicles, their 
type, accidents, etc. Assuming that this information is obtained by reading values 
of sensors in the field, or based on the information coming from applications, the-
se data are usually moved to the cloud so that they are easily and widely accessi-
ble. 

While cloud platforms provide solutions where interoperability among different 
infrastructures is now easy to achieve, we cannot say the same for the edge part. 
Indeed, agreement about protocols, data formats, and interfaces of smart devices, 
sensors, and smartphones has not been achieved yet. This results in difficulties 
when data providers have to deal with heterogeneous devices that need to com-
municate or, at least, need to send the data to the cloud for further processing. 

Focusing on the processing, a significant issue to be taken into account con-
cerns the ever-increasing computational and storage capabilities provided by the 
resources on the edge. Regarding data storage, once the data are created it is not 
required to immediately move them to a capable storage in the cloud. Conversely, 
it is possible to leave the data where they are produced and, in addition, to exploit 
the computational power to perform some pre-processing directly on the edge. 

As a last step in the data management life-cycle, data providers have to make 
data available to data consumers also considering that they could have different 
needs and different capabilities. In this light, principles of Service Oriented Com-
puting can be adopted to define the DaaS interfaces that data providers have to 
propose to allow the final users to properly consume the data. Such interfaces have 
to consider both functional (i.e., how the data can be accessed) and non-functional 
(i.e., which is the quality of the data and the service) aspects. 

Regarding functional aspects, the offered APIs can adopt the REST [19] archi-
tectural style, typical SQL-based interfaces or others. Concerning non-functional 
aspects, data quality dimensions (e.g., timeliness, accuracy) and service quality 
dimensions (e.g., response time, latency, data consistency) need to be computed 
and balanced according to consumer expectations.  
1.2.2 Data consumption 
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From the consumer standpoint, data are accessible by invoking the available 
DaaS. Assuming that there could be several data providers, each of them in charge 
of managing different data sources, data consumers have to deal with a plethora of 
DaaS, each of them providing specific data with different quality of data and ser-
vice.  

Data intensive applications are built on top of these DaaS with the goal of ana-
lysing and processing provided data to create added value for the customer. For 
instance, data coming from the highway manager in the example above can be 
combined with weather information to analyse the correlation between accidents 
and severe weather conditions. 

A particular aspect considered in DITAS concerns the combination between the 
Fog Computing paradigm and the Service Oriented Computing approach. Conse-
quently, we assume that while resources required for service provisioning are 
known in advance and under the control of the service provider, there are addi-
tional resources that live on the premises of the customers which will be known by 
the provider right before starting the data consumption along with the quality of 
data and service requirements. With respect to the typical approach, these addi-
tional resources are not part of the client infrastructure, but they can be included in 
the set of resources belonging to the service provisioning infrastructure. In this 
way, the data provider can exploit them to improve the user experience of that 
specific customer. Among the different opportunities that this scenario could open, 
in this chapter we focus on the possibility of hosting part of the application logic 
which composes the data provisioning. Similarly, the resource on the edge of the 
network can be used to host the data that are considered relevant for the consumer 
and thus to reduce the latency when users request them.  
1.3 DITAS approach 

From the perspective of a data provider, exposing data following a DaaS para-
digm requires to decide where to store data, in which format, how to satisfy the 
security constraints, and many other aspects. This situation becomes even more 
complex when dealing with a heterogeneous system where different devices are 
involved in the data management. For instance, over time, different versions of 
smart devices might be used to collect data from the sensors installed in manufac-
turing plants. This implies that the developers have to manage this heterogeneity 
as well as to properly distribute the data among edge and cloud, to make applica-
tions as efficient as possible.  

Moving to the data consumer perspective, the development of data-intensive 
applications requires to select the proper set of DaaS, considering both functional 
and non-functional aspects, to connect and start interacting with them, ensuring 
that the agreed quality of data and service is respected, etc. All of these aspects 
could distract the attention of the data intensive application developer from the 
business logic, i.e., to organize the actual data processing. 

For this reason, in order to improve the productivity of application developers 
with the DITAS platform, we aim to offer tools for smart data management trying 
to hide the complexity related to data retrieval, processing and storage. To this 
end, data-intensive applications in DITAS are not directly connected to the data 
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sources containing the necessary data, but the access to these data sources is medi-
ated by a specific component called Virtual Data Container (VDC) (see Figure 3), 
which represents the concrete element able to provide a DaaS. In more detail, a 
VDC: 
● Provides uniform access to data sources regardless of where they run, i.e., on 

the edge or on the cloud. 
● Embeds a set of data processing techniques able to transform data (e.g., en-

cryption, compression). 
● Allows composing these processing techniques in pipelines (inspired by the 

node-RED programming model) and executing the resulting application. 
● Can be easily deployed on resources which can live either on the edge or in 

the cloud. 
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Figure 3 - The role of VDC in the DITAS data management 
 

To manage this indirect access between data sources and the data-intensive ap-
plication, DITAS distinguishes between the data sources’ lifecycle and the data-
intensive application’s lifecycle. The former defines the relationship between a da-
ta source and a VDC, whereas the latter defines the relationship between the data-
intensive application and the VDCs which give access to the required data. 

For this reason, in the terms adopted in DITAS, a data administrator has a 
complete knowledge of one or more data sets and is responsible for making them 
available to applications that might be managed by other developers through a 
DaaS. On the other hand, a DIA developer defines the functional and non-
functional aspects of the data-intensive application and selects the best fitting 
DaaS needed to compute the analysis. Moreover, the DIA developer is in charge 
of developing the business logic of the data-intensive application. Exploiting the 
DITAS-SDK, application developers only focus on data management having the 
Virtual Data Container (VDC) handle the burden of selecting the best location 
where to store the data and the most suitable format to satisfy both the functional 
and non-functional requirements specified by the application designer.  
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Figure 4: Data-intensive application lifecycle in DITAS 

 
 

Based on the work done by the data administrator and the DIA developer, 
DITAS offers two environments able to support the data-intensive application life-
cycle. More specifically:  
• An SDK assisting both data administrators and DIA application developers. 
• An execution environment (EE) where the deployed VDCs and DIA oper-

ates. 
 

The next paragraphs detail the steps composing the data-intensive application 
life-cycle as shown in Figure 4. In particular, we have identified two main phases: 
the design and development phase, which takes advantage of the DITAS-SDK and 
the execution phase which relies on the DITAS-EE. 
1.3.1 Design and development phase 

The first step of the application life-cycle concerns the work performed by the 
data administrator (a.k.a. data provider, who – based on the managed data sources 
– creates a VDC Blueprint which specifies the characteristics of a VDC in terms 
of: 
• The exposes data sources 
• The exposed APIs 
• How the data from the data sources needs to be processed in order to make 

them available through the API. 
• The non-functional properties defining the quality of data and service. 
• The components cookbook: a script defining the modules composing the 

container as well as their deployment. 
 

As DITAS follows the Service Oriented Computing principles, the visibility 
principle requires to publish a description of a service to make it visible to all the 
potential users. As a consequence, the data administrator publishes the VDC 
Blueprint. At this stage, no specific approach for the VDC discovery has been 
adopted (i.e., centralized registry, distributed publication), as it is an issue to be 
taken into account for future work. 
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Once published, the DIA developers come into play. In fact, their role is to 
search for the data that are relevant for the applications they are developing. As 
the information included in a VDC Blueprint also concerns functional and non-
functional aspects, a DIA developer relies on this information to select the most 
suitable VDC according to its purposes. It is worth noticing that, based on the na-
ture of the DIA, the developer could select different VDCs referring to different 
data. A peculiar aspect of the DITAS approach concerns the data utility, that is de-
fined as the relevance of data for the usage context, where the context is defined in 
terms of the designer's goals and system characteristics [20]. In this way, data util-
ity considers both functional (i.e., which data is needed) and non-functional (e.g., 
the data accuracy, performance) aspects.  

Finally, the developer designs and develops the DIA and deploys it on the 
available resources which can be located on the edge or in the cloud. The initial 
deployment is the key element in the approach, as in this phase it is required to 
know which are all the possible resources on which the VDC can be executed. As 
introduced in Section 1.2, the considered Fog environment implies that DaaS can 
be provided using resources belonging to both the provider and the consumer. 
Without loss of generality, we can assume that the provider resources are always 
in the cloud, while the consumer resources are always on the edge. In this way, a 
VDC living in the cloud has more capacity and it probably lives close to the data 
source to which it is connected. Conversely, a VDC living on the edge has the ad-
vantage of living closer to the user, thus reducing latency when providing the re-
quested data. Deciding where to deploy the VDC depends on the resources re-
quired by the VDC (e.g., it might happen that the amount of resources to process 
the data before making them available to the user cannot be provided at the edge), 
the network characteristics (e.g., the connection at the consumer side can support a 
high-rate transmission), and security (e.g., not all the data can be moved to the 
consumer side, thus even the processing cannot be placed at the edge). 

Once the DIA has been deployed, DITAS supports a flexible execution that ini-
tiates data and computation movement when necessary to ensure the fulfillment of 
the non-functional requirements.  
 
 



11 

VDM

Task 
movement 

selector

Task 
movement 

selector

DIA app 
(Containerized 

application)

VDC
for the 

app

VDC
A

VDC
For other

app

Data 
source A1

Data 
source A2Data utility and QoS monitoring

VD
C

po
ol

Instantiate 
and manage

monitor

 
Figure 5: DITAS execution environment 

 
1.3.1 Execution phase 

Before introducing the steps of the DIA life-cycle related to the execution, it is 
worth introducing some of the elements composing the DITAS Execution Engine 
(DITAS-EE). As reported in Figure 5, the DITAS-EE solution is built on top of a 
kubernetes [21] cluster. In fact, given a VDC Blueprint, based on the cookbook 
section, a docker [22] container is generated and deployed. Furthermore, given a 
VDC Blueprint, many application developers can select it for their own applica-
tion. As a consequence, the DITAS-EE has to manage several DIAs which operate 
with different VDCs. Moreover, as the same VDC Blueprint can be adopted in dif-
ferent applications, each of these applications includes instances generated from 
the VDC Blueprint, thus, they are connected to the same data sources.  

To properly manage this concurrent access, given a VDC Blueprint, the 
DITAS-EE, includes a VDM (Virtual Data Manager) that has to control that the 
behavior of the different instances of the same VDC Blueprint correctly operate on 
the data sources and no conflict arises when enacting data and/or computation 
movements.  

Thanks to the abstraction layer provided by the VDC, applications deployed 
through the platform can access the required data regardless of their nature and lo-
cation (cloud or edge). Due to the distributed nature of the applications to be man-
aged, to the execution environment being distributed by definition and because of 
the different computational power offered by the devices, it might happen that on-
ly a subset of the modules can be installed on a specific edge device. For this rea-
son, at deployment time, not only the data-intensive application is distributed over 
the cloud and edge federations, but also the execution environment is properly de-
ployed and configured to support the data and computation movement. The deci-
sion on where to locate both the application and the data required by the applica-
tion itself is taken at design time, but can be updated during the application 
execution, according to the detected state of the execution environment. Some de-
tails about the approach followed to support the data and computation movement 
are introduced in the next section. 
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1.4 Data and computation movement in Fog environments 
Movement strategies provide solutions for moving data or computation in a 

Fog environment, taking into consideration all the factors which affect the applica-
tion execution, data usability and trying to keep the QoS and the data quality at the 
levels required by the application designer. 

Data and computation movement strategies are used to decide where, when, 
and how to save data - on the cloud or on the edge of the network - and where, 
when, and how to move tasks composing the application to create a synergy be-
tween traditional and cloud approaches able to find a good balance between relia-
bility, security, sustainability, and cost.      

The driver for data and computation movement is the evaluation of the Data 
Utility [20]. When an application is deployed through the DITAS platform, the 
application designer expresses application requirements about the QoS and quality 
of data used both to lead the data source selection and to select a proper computa-
tion and data location. In the application requirements both hard and soft con-
straints are expressed. When the evaluation of the data utility does not respect the 
application designer requests, the VDM will enact the most suitable data and 
computation movement strategies to balance the posed requirements such as re-
ducing the latency or the data size, ensuring a given accuracy, while maintaining 
— if requested — privacy and security. Data and computation movements are ex-
ecuted to satisfy all the hard-constraints and, as much as possible, soft-constraints 
and requirements expressed by the user with the final objective of executing the 
requested functionality having in mind also the maximization of the user experi-
ence. As computation movement requires a dynamic deployment of the data pro-
cessing tasks, data movement could require only a transformation of the data for-
mat (e.g., compression or encryption) or could also affect the quality of the data 
(e.g., data aggregation).  

Data and computation movement are managed over the entire life-cycle of the 
application, from its deployment to its dismissal. During this time, the application 
and its data sources are monitored and evaluated in order to satisfy the hard and 
soft requirements expressed by the application developer. As the decision of 
when, how, and where data and computation movement must occur depends on 
the current situation in which the data-intensive application operates, the execu-
tion environment includes a distributed monitoring system. 

The management of data and computation movement is a life-cycle composed 
of the steps of the MAPE (Monitor-Analyze-Plan-Execute) control loop: 
• Monitor: a DIA is monitored (using the Data Utility and QoS Monitor mod-

ule) through a set of indicators providing information about both the applica-
tion behavior and the data source state. This set of indicators can be enriched 
by a dependency map where such indicators are related to each other, giving 
a more refined knowledge about the execution environment. 

• Analyze: The result of the previous phase is used to compare the current sit-
uation with the required data utility values. If the data utility provided to the 
application does not satisfy the application requirements, an exception is 
raised. Such an analysis is one of the main tasks to be executed by the VDM. 
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• Plan: according to the detected violation, some movement actions should be 
enacted. These actions are in fact data movement and computation move-
ment strategies. To support the planning phase, we will study dependencies 
among the different data and computation movement techniques in order to 
identify positive or negative effects to the indicators related to aspects such 
as reliability, response time, security, and quality of data that need to be 
measured during the execution of applications. Knowing these relations, it is 
possible to select the proper action for a violation. The impact on data utility 
derived from the enactment of the data and computation movement strategies 
will be analyzed and predicted applying data mining techniques to logs ob-
tained from previous executions. Referring to the DITAS-EE architecture, 
the task movement selector and the data movement selector are the two 
modules in charge of the planning. 

• Execute: once the strategies have been selected, they can be enacted in order 
to fix violations. For data movement, specific modules are executed to move 
the data from the source to the destination, whereas for computation move-
ment, the set of possible actions corresponds to the kubernetes capabilities. 

 
We define a movement strategy as a modification in the placement of a compu-

ting task or a set of data. The abstract movement strategy is characterized by one 
movement action and an object category (e.g., data, computation). The abstract 
movement strategy is also characterized by the effects on the environment that the 
enactment of such a strategy will cause. This information can be retrieved by a 
knowledge base built from the observation of previous enactments using machine 
learning techniques like reinforcement learning techniques. 

In order to enact a movement strategy, it is necessary to specify also the actual 
object of the movement and its initial and final location. We define this as move-
ment strategy instance. A movement strategy instance may be subject to some 
constraints given by the object of movement. If we consider data movement, a 
constraint can be related to privacy and security policies on the moved data. These 
policies are independent from the context and need to be applied anytime a 
movement action is applied to an object affected by them.  

In order to enact a movement action, several alternative techniques may be 
used. A movement technique is a building block of a movement strategy. Strate-
gies will combine these building blocks according to the specific needs of an ap-
plication. Similarly, computation movement techniques will be proposed to define 
how to distribute the tasks to be executed among the available nodes taking into 
account the requirements of the task, the resource made available by a node and 
general requirements at application level. For instance, in case of a movement 
strategy requiring data aggregation, one of a set of different movement techniques 
may be selected, each technique implementing a different aggregation algorithm. 

The selection of the most suitable movement action for a given context should 
be driven by the expected utility improvement, which is computed on the basis of 
the detected violation and the known effects of the strategy on the environment. 
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Based on this definition of the movement strategy, the primary goal of DITAS 
is to find a coherent mechanism for deciding which is the best data/computation 
movement action to be enacted based on the application characteristics, the nature 
of the data, privacy and security issues, and the application’s non-functional re-
quirements. Creating rules and selecting parameters for an automatic selection of 
data movement actions in different contexts represents now a major challenge. In 
Figure 6 we show a preliminary model specifying the influences that need to be 
mapped between several elements of the environment. More specifically, through 
the analysis of the data collected by the monitoring system some events are raised 
by violations in the data utility, which compose the context in the top layer of the 
figure. These events are linked to the goals in the middle layer, which are a repre-
sentation of the user requirements composing the data utility evaluation. At the 
bottom level, we represent the available movement strategies together with their 
effects on the goals.   

 
	

 
 

Figure 6 - Influences among context goals and movement strategies 
1.5 Related work 

Since the 1990s, when interconnection of heterogeneous information systems 
managed by different owners became easier and when the Web started managing 
significant amounts of information, the problem of delivering such information 
has become more and more relevant: the more the data are distributed, the more 
difficult it is to find the information needed. Thus, tools are required to guide the 
users in this task. In this scenario, Information Logistics has emerged as a research 
field for optimizing the data movement, especially in networked organizations 
[12]. As discussed in [23], Information Logistics can be studied from different 
perspectives: e.g., how to exploit the data collected and managed inside an organi-
zation for changing the strategy of such organizations, how to deliver the right in-
formation to decision makers in a process, or how to support supply chain man-
agement. In our case, according to the classification proposed in [23], we are 
interested in user-oriented Information Logistics: i.e., the delivery of information 
at the right time, the right place, and with the right quality and format to the user 
[24], thus data movement becomes crucial. As a general framework, there are 
three sets of data movement techniques.  
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The first includes techniques that affect neither the content nor the structure of 
the moved data.  In this case, most of the approaches are application-driven, i.e., 
applications accessing this data heavily influences the adoption of the techniques 
[25-27]. 

The second set concerns techniques that do not modify the content of the data 
but only their format. Lossless, both spatial and temporal compressions as well as 
data encryption mechanisms fall into this category with the objective of either re-
ducing the amount of data or making the communication secure [29, 30]. 

Finally, the third set includes techniques that operate on the data transmitted 
aiming to improve the performance of data movement while maintaining a suffi-
cient level of data quality [24, 31, 32]. 

To support data movement in a Fog environment which has to deal with heter-
ogeneous devices, data virtualization becomes fundamental. Data virtualization 
[33] is a data integration technique that provides access to information through a 
virtualized service layer regardless of data location [34]. Data virtualization [35] 
allows applications to access data, from a variety of heterogeneous information 
sources, via a request to a single access point so that it provides a unified, ab-
stracted, real-time, and encapsulated view of information for query purposes and 
can also transform the information to prepare it for consumption by various appli-
cations. Data virtualization solutions add levels of agility (business decision agili-
ty, time-to-solution agility or resource agility) that are difficult to achieve with 
traditional ETL solutions. 

Container-based Virtualization is one of the two approaches of lightweight vir-
tualization [36], which minimize the use of processor and memory resources by 
sharing system calls with the host operating system. Managing data in containers 
can be done either by keeping the data with the container or by implementing a 
dedicated data layer [37]. Keeping the data with the container requires the use of 
techniques that move the data within the container. An example is from Clus-
terHQ’s Flocker [38], which ensures that when an application container moves, 
the data container moves with it. By implementing a dedicated data layer for the 
storage container, data services (databases, file systems) can be implemented on 
more persistent entities such as virtual machines and physical servers.  
1.6 Concluding remarks 

Fog Computing is an emerging paradigm able to support the development, de-
ployment and execution of distributed applications. This chapter has focused on a 
specific type of applications: data-intensive applications which have to deal with 
the gathering, processing, provisioning, and consumption of data. Following the 
Service Oriented Computing principles, this paper introduces the approach pro-
vided by the DITAS project that allows a flexible execution of data-intensive ap-
plications. Such flexibility is provided through data and computation movement 
actions allowing the data-intensive application to change the way in which the 
processing is distributed at run-time, as well as to optimize how the data are dis-
tributed among the different nodes involved in the execution which may belong to 
edge and cloud environments. Computation movement is ensured by the adoption 
of a containerized solution which creates self-contained modules, i.e., VDC, that 
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can be easily moved around the Fog environments. Data movement is supported 
by the execution of specific actions that are driven by the data utility that defines 
the relevance of data for the usage context, where the context is defined in terms 
of the designer's goals and system characteristics. 

Since the DITAS platform is still under development, future work will focus on 
the validation in real applications. In particular, the approach will be tested in a re-
al case study concerning an industry 4.0 scenario. Here data coming from sensors 
installed on some machinery need to be quickly processed exploiting both the 
computational power provided at the edge, which ensures reduced latency, and the 
computational power available in the cloud, which ensures significant scalability. 
In particular, the impact in terms of overhead introduced the DITAS platform will 
be analyzed. 
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