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Monitoring-aware Optimal Deployment for
Applications based on Microservices
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Abstract—Modern cloud applications are required to be distributed, scalable, and reliable. The microservice architectural style enables
developers to achieve this goal with reduced effort. Nonetheless, microservices deployment is not trivial due to the heterogeneity of the
microservices in terms of both functional and non-functional requirements. This is also true when considering the monitoring
requirements that are specific to each microservice and must be satisfied in order to enable the verification of the application objectives
satisfaction. However, not all providers offer the same set of metrics with the same quality.
The goal of this paper is to provide an approach for supporting the deployment of microservices in multi-cloud environments focusing
on the Quality of Monitoring. Adopting a multi-objective mixed integer linear optimisation problem, our approach supports the
application owner in finding the optimal deployment for satisfying all the constraints and maximising the quality of monitored data, while
minimising the costs. To this end, a knowledge base is introduced to mediate between the perspectives of the cloud provider and the
application owner, while a Bayesian Network is adopted to enhance the provider’s monitoring capabilities by estimating metrics
requested by the application owners that the cloud provider is not able to monitor.

Index Terms—Monitoring system, microservice, multi-cloud, cloud computing, deployment optimisation
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1 INTRODUCTION

SOFTWARE solutions based on the microservice architec-
tural style [1] are increasingly gaining the attention of

software engineers, as their underlying pattern promises
to enable the development of highly reliable and scalable
applications with reduced effort compared with traditional
approaches. The benefits of adopting a microservice-based
architecture are clear, especially in the development phase.
Unlike monolithic applications, this new approach requires
an application to be organised into a set of distributed,
communicating microservices, the development of which
has boosted the adoption of agile methodologies [2]. Based
on the application design, microservices collaborate at run-
time to satisfy the global objectives of the application (e.g.
performance, security, and scalability) and an effective mon-
itoring system is required to check whether such objectives
are actually achieved.

While on the one hand the adoption of the microservice
architectural style has several advantages in terms of agility,
on the other it makes appropriately supporting the monitor-
ing of microservice-based applications more challenging [3].
In fact, due to the independence of the teams involved
in the development of the microservices and the different
characteristics of such microservices, it results in different
monitoring requirements. In some cases, microservices are
CPU intensive, while others are more storage intensive.
As a result, different metrics with different details may be
required. These different requirements affect deployment,
as the microservices must be placed in a site where the
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cloud provider’s capabilities reflect the application owner’s
requirements. Moreover, additional complexity comes from
the scalable and flexible nature of microservice-based appli-
cations, thus the place in which they are deployed needs to
offer a scalable monitoring solution as well.

The goal of this paper is to support the deployment of
microservice-based applications by considering the Quality
of Monitoring (QoM), i.e., the ability of a set of cloud
platforms to satisfy the monitoring requirements of the
microservice-based application, as a key factor at deploy-
ment time, in order to make the management and collection
of monitoring data simpler and to optimise the monitoring
capabilities. QoM is relevant since monitoring data about
the application provides the instruments for analyzing the
efficiency and effectiveness of the application and for taking
informed decision about improvements and modifications.
To this end, the main contributions of this paper are:
• A definition of QoM for microservice-based applica-

tions that takes into account the ability of a cloud
provider to cover the set of required metrics while also
providing a predetermined degree of completeness.

• A framework allowing developers of microservice-
based applications to establish the requirements for the
deployment of the application and that supports them
in the establishing the relevant metrics by means of a
knowledge base.

• An API that allows cloud providers to express their
capabilities in terms of QoM.

• The implementation of a multi-cloud deployment op-
timiser to suggest the best match between applica-
tion requirements and cloud capabilities using a multi-
objective mixed-integer linear optimisation problem
(MOMILP) algorithm while taking into account also
issues relating to the potential scalability of the appli-
cation. The optimiser exploits dependencies between
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monitoring metrics expressed in the knowledge base
through a Bayesian Network (BN).

This paper is an extension of a previous work [4] in
which a simpler version of the matchmaking algorithm was
applied to the deployment of Virtual Machines (VM) as op-
posed to microservices hosted in containers. With respect to
the previous scenario, this new approach makes it possible
to express the monitoring capabilities also at a dimensional
level and thus in a more abstract way. Moreover, the scalabil-
ity that may be required by the microservices is considered
in the optimisation model to find a deployment that is valid
also during the application scaling in and out.

The rest of the paper is organized as follows. Sect. 2,
using a running example, sets out the motivation for de-
veloping a monitoring-aware deployment for microservice-
based applications. Sect. 3 provides a definition of QoM
while highlighting the research challenges that should be
considered at deployment time. Sect. 4 discusses the details
of our approach, whereas Sect. 5 contains a formal descrip-
tion of the optimisation problem that drives the monitoring-
aware deployment. Sect. 6 validates the approach in terms
of response time also investigating scalability issues. Related
work is discussed in Sect. 7, while Sect. 8 contains some
concluding remarks and suggests possible future directions
for research in this area.

2 MOTIVATION

The need for an approach to deploying a microservice-
based applications that also takes into account the issue
of monitoring is illustrated by the application shown in
Fig. 1. The goal of this application is to provide support
in predicting the trajectories of eels in the ocean based on
previous observations stored in an oceanographic database.
The application consists of three microservices: (i)MS1 per-
forms a pre-processing of raw data about oceans conditions
and historical data about the behaviour of eels. The data
are cleaned and restructured (considering eels’ cohorts and
years of observations) to make processing more efficient;
(ii) MS2 calculates the trajectories for a single year of a
cohort of eels. Depending on the number of years to be
considered and the size of the cohort, several instances of
this microservice may be required and executed in parallel.
(iii) MS3 aggregates the results of the instances of MS2 and
performs some post-processing to help with visualization
of the data. We can assume that three different develop-
ment teams are involved in developing these microservices.
In addition to the functional requirements – such as the
number of CPUs or the amount of memory for the VM –
these teams correspond to different requirements in terms
of monitoring capabilities depending on the objectives of
the microservices:
• MS1: I/O throughput, Availability and Free Storage.
• MS2: I/O throughput, CPU usage and Availability.
• MS3: CPU usage, Memory usage and Availability.
As the efficiency of MS1 and MS2 depends on the ability

to read and write data from data sources, monitoring the
I/O speed is fundamental. At the same time, MS2 and MS3
perform CPU-intensive tasks and their efficiency depends
on the CPU usage level as well as on the ability to not
saturate the memory. The operator must also take into
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Fig. 1. Eels’ trajectory computation case study.

account these monitoring requirements in addition to the
usual infrastructure and economic constraints. Since differ-
ent cloud providers may have very different monitoring
capabilities and contracts, selecting an optimal deployment
approach is not an easy task. The differences regard (i) the
metrics that each cloud provider is able to monitor; (ii) the
degree of customisation that allows the user to define cus-
tom metrics; (iii) the rate at which the metrics are collected;
and (iv) the cost of the monitoring service provided. An
examination of the services of the main cloud providers
shows these differences clearly. Google Cloud1 charges its
customers according to the amount of monitoring data
collected per billing account or the number of monitoring
API calls. Moreover, the metrics directly provided by the
Google Cloud Platform (GCP) are free, while other metrics
(e.g., user metrics or AWS metrics) are provided for a
supplementary charge. The price of the monitoring service2

is mainly defined by: (i) the amount of resources, (ii) the
number of metrics, (iii) whether the metrics are GCP metrics
or not, and (iv) the rate at which the metric data is written
(affecting the monitoring data volume). Similarly, Amazon
Cloud Watch3 provides a set of predefined metrics and the
option to define custom metrics. Two main service levels4

are offered to the user: (i) a free service that provides only
basic metrics at a 5-minutes rate and up to 10 metrics at a 1-
minute rate with a limited amount of monitoring APIs calls,
(ii) a paid service that enables custom metrics to be defined
and provides metrics at a 1-minutes rate. The cost depends
on (i) the number of metrics, (ii) the monitoring rate, (iii)
the number of instances, and (iv) the geographical region of
deployment. The IBM Cloud Monitoring service5 collects all
metrics at a 1-minute rate and also allows custom metrics
to be defined to complement the basic ones. Two plans
(“lite” and “premium”) are offered at a cost depending on
the amount of monitored metrics. Other monitoring services
also provides different pricing plans for a different number
of instances or metrics (e.g., CloudMonix6 and New Relic7).
Finally, as the number of microservices of an application
can be significant, deployment can involve different sites,
making it necessary to deal with heterogeneous monitoring
systems. Some monitoring solutions (e.g., New Relic or
Datadog8) have been proposed to integrate the monitor-

1. https://cloud.google.com/monitoring/
2. https://cloud.google.com/stackdriver/pricing
3. https://aws.amazon.com/cloudwatch/features/
4. https://aws.amazon.com/cloudwatch/pricing/
5. https://console.bluemix.net/catalog/services/monitoring
6. http://cloudmonix.com
7. https://newrelic.com/application-monitoring/pricing
8. https://www.datadoghq.com/
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ing data gathered from the different monitoring platforms
on which the microservices are deployed with a view to
support the analysis of these data to find bottlenecks, and
managing alerts in the event of problems.

This complex situation means that the deployment of an
application based on microservices – in addition to the func-
tional constraints – is required to manage several aspects.
Therefore, to simplify this step, the proposed approach
offers a solution that identifies the variables that are relevant
to the problem and computes the optimal deployment. In
doing so, monitoring aspects are considered to address one
of the relevant issues raised by the scheduling of microser-
vices as discussed in [3].

3 QUALITY OF MONITORING

In this paper we introduce the concept of QoM:

Definition 1. QoM is the fitness of the cloud provider capabilities
in relation to the specific microservice-based application require-
ments in terms of QoS measurements that considers both the
ability to monitor a metric and to provide a suitable measurement.
QoM can be influenced by several factors, such as the level of
confidence in the data (e.g., precision, accuracy, completeness) and
the overhead needed to manage the monitoring system (in terms
of resources for managing, storing, and retrieving the data).

As we consider QoM a key to the optimal deployment of
microservices, the overhead of the monitoring system can be
considered equivalent for all the cloud providers and can be
ignored since it has no impact in the deployment decision.
In fact, given the application requirements, a similar volume
of monitoring data would be generated by each of the cloud
providers and how these data are managed by the storage
system is not of interest to the application owner.

Conversely, we are interested in the level of confidence
provided by the data, which can vary significantly between
different cloud providers. Accuracy and precision are qual-
ity metrics used to evaluate the quality of the monitoring
system sensors. Although these metrics can be of interest,
they are rarely published by cloud providers and difficult
to estimate. Estimation requires us to know the expected
behaviour of the monitoring data to be compared with the
result of the monitoring system. It is not feasible to obtain
this information prior to deployment. As a result, these two
metrics are overlooked unless they are explicitly declared in
the capabilities of cloud providers. In this work we focus on
the completeness of the monitoring system. This property
is measured by (i) the extent to which monitoring informa-
tion available for a cloud provider covers the monitoring
requirements of the application, and (ii) the extent to which
the sampling rate offered by the cloud provider satisfies the
requirements of the application owner (see Sect. 5.1).

While much of the literature in this field focuses on the
ability of a cloud provider to measure a set of required
QoS metrics [5], none considers the quality of the monitored
data. In particular, as the focus here is on how to optimise
deployment, we assume that the following are available: (i)
a declaration of QoM capabilities on the part of a set of cloud
providers as well as the associated cost, and (ii) a list of the
set of microservices comprising an application along with
QoM requirements and the total budget. At deployment

time, it is necessary to identify the combination of cloud
providers and microservices that best satisfies all the QoM
requirements while remaining within budget. There are
several potential challenges to achieving this:
• Mismatched definitions of QoS metrics (C1): the way in

which the metrics offered by the cloud providers and
required by the microservices are defined may be differ-
ent. As a result, supply and demand cannot be matched
as terms of comparison are unavailable. Moreover, ap-
plication owners may have insufficient knowledge of
the finer details of the aspects that they wish to monitor,
and may need support in defining their monitorability
requirements. To mitigate this issue a knowledge base
is introduced.

• Mismatched quality of QoS metrics (C2): the monitor-
ing capabilities offered by cloud providers are usually
expressed in terms of predefined packages. A cloud
provider may be unable to monitor a specific metric or
its monitoring may be of lower quality (e.g. sampling
rate lower than requested). As cloud providers allow
certain monitoring capabilities to be customised, the
proposed approach takes into account also the work
required to implement such customisation.

• Unavailability of QoS metric monitoring (C3): customisa-
tion can be implemented even when a required met-
ric is not available at all. This especially in the case
of application level metrics that are rarely supported
natively by cloud providers but for which tools to
include them in the monitoring systems are provided.
In some cases, however, even when these tools are
available, certain metrics may not be monitored. The
matchmaking approach proposed here also considers
the option of using a BN to estimate the values of the
unavailable metrics.

• Application scalability (C4): scalability is a basic feature
of microservice-based applications. This means that,
at runtime, several instances of one or more of the
microservices comprising the considered application
can be created. All of these instances must therefore
be monitored. As scalability is managed at runtime,
optimisation of QoM at deployment time must consider
also this variable.

How the approach proposed here deals with these chal-
lenges is investigated in the following sections.

4 AN APPROACH TO MONITORING-AWARE DE-
PLOYMENT

The approach to supporting QoM-aware deployment of
microservice-based applications proposed here is illustrated
in Fig. 2. Two classes of stakeholders are considered: the
application owner, who expresses QoM requirements for the
microservices, and the cloud provider.

The approach is built on the information contained
in a Knowledge Base (Sect. 4.1) consisting of two parts: a
Hierarchical Model of Dimensions (HMD), representing the
metrics at different levels of granularity, and a Bayesian
Network (BN) of metrics providing information about the
dependencies between different metrics. Application own-
ers specify quality and monitoring constraints for each of
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Fig. 2. The general architecture of the proposed approach.

the microservices composing the application by interact-
ing with the framework through a Dashboard that can be
used to specify requirements. Such requirements are then
translated into the constraints that define the optimisation
problem by the Requirements Translator (Sect. 4.2). On the
other side, each cloud provider declares its services as a set
of quality parameters and the list of metrics provided by
its monitoring system together with the quality associated
with the monitoring of each specific metric (Sect. 4.3). The
services offered by individual cloud providers are translated
into an appropriate format by the Registration Processor and
stored in a dedicated database called Registrations DB. The
core of the architecture is the MOMILP optimiser that is
used to find the best deployment plan for matching the
application owners requirements and the capabilities of the
cloud provider. The results of the optimisation algorithm are
presented to the application owner through the dashboard.

4.1 The knowledge base

The primary role of the knowledge base is to solve the issue
of mismatched definitions of QoS metrics (C1) introduced in
Sect. 3 by providing a common framework for application
owners to specify their monitoring requirements and cloud
providers to specify their monitoring capabilities while tak-
ing into account the different perspectives that these two
stakeholders may have. For this reason, the HMD is built
around three main concepts: dimensions, metrics, and met-
ric measurements, hierarchically organised (see Fig.3(a)).

Definition 2. A dimension is a high-level characteristic and is
not measured directly. It is defined by a name and a set of metrics
used for its evaluation:

di ∈ D =< name, {mj} >

As shown in Fig. 3(a), for the running example, we
assume that nine dimensions are considered. A microservice
can be executed in a container or in a VM, thus the status
of the container or of the virtual machine running the mi-
croservice is of interest, as well as the status of the physical
machine where the VM or container is instantiated. The
same holds for the performance and sustainability dimensions.

Definition 3. A metric is a quantitative measure of the degree to
which an application or a microservice possesses a given attribute.
Each metric is linked to a dimension and expresses a way to
quantify such a dimension. A metric is a low-level requirement

and is defined by a name and a function used for its computation
based on a number of measurements in the environment:

mj ∈M =< name, f(mmk) >

For instance, the VM status dimension is influenced by
a set of metrics, i.e. VM Free storage, Mem Usage, and CPU
Usage metrics. Generally speaking, the metrics connected to
a dimension represent non-exclusive alternatives for evalu-
ating the dimension (OR relation). For this reason, someone
could represent the VM status only in terms of CPU Usage,
some other might be interested in all of the metrics.

Definition 4. A metric measurement is a measurement pro-
vided by the monitoring system used to quantify the value of a
metric. It is defined by a name and the sampling rate at which it
is collected:

mmk =< name, samplingRate >

Each metric is linked to one or more metric measurements.
For instance, the CONT Free Storage metric is computed
according to a function that uses the following metric mea-
surements as inputs: (i) CONT TOT Storage related to the
total storage space allocated; (ii) CONT Used Mem related
to the amount of used memory in the container. As both
of these metric measurements are required to compute the
CONT Free Storage metric, an AND relation (represented by
an arc linking all the required metric measurements) is used
to represent this dependency.

In the literature, a number of approaches have been
proposed to model the characteristics of quality attributes
that can be adopted for the implementation of the HMD. For
instance, ISO 25010:2011 [6] defines quality of service hierar-
chically as a set of characteristics, sub-characteristics, quality
properties, and measurements. The model can thus capture
the different stakeholder perspectives that are distinguished
in the standard between primary users (application owners
in our case) and the secondary users (cloud providers). The
NOVI project [7] proposes an information model organised
into a set of ontologies, including: (i) a monitoring ontology
that allows quality parameters to be defined in terms of
measurement levels and units, and (ii) a resource ontology
to associate measurements with the objects to be monitored.
It is worth noting that, although the creation of a shared
knowledge base has the advantage of providing a common
framework to specify requirements and capabilities [8], cre-
ating one often requires considerable effort. At the same
time, the way in which metrics are currently published by
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Fig. 3. Elements of the knowledge base [4]

cloud providers (e.g. AWS Cloudwatch) often makes the
task of understanding their meaning and characteristics a
lengthy one. Our approach, therefore, supports the idea -
also followed by the proposers of ontologies for monitoring
systems in various domains such in buildings, processes,
and data centres - that the advantages of a shared, hierar-
chical model, requiring a significant effort in the beginning,
may save time during the microservice design and deploy-
ment phases.

The second component of the knowledge base is the
Bayesian Network (BN). While the HMD maps the relations
that exist at different levels between dimensions, metrics,
and metric measurements, the BN focuses on the lower
layer, modelling relations between metric measurements.
The BN can predict trends in some metrics without collect-
ing actual data from the monitoring system. Trends express
the observed or predicted behaviour of a metric measure-
ment, i.e. whether the value of a metric measurement is
increasing or decreasing. The BN model is based on the
assumption that metrics might not be independent, and that
any dependencies can be either explicit (declared in the
formula through which a metric is computed, see Def. 3),
or implicit when their relation is hidden. Relations between
metrics can be extracted by analysing data collected by the
monitoring system, and represented through a BN express-
ing causal relations among them as discussed in [9]. The
proposed BN is a general model computed from monitoring
data collected by several cloud providers. In the network,
nodes are metric measurements of interest, while edges map
causal relations between metric measurements. Trends in a
metric measurement are dependent only on the knowledge
of the values and/or behaviour of its parent nodes in the
BN. The estimated trend is associated with a confidence
value contained in the Conditional Probability Table (CPT)
associated with the node that quantifies the influence of the
parents on the child node. An example of a BN based on the
set of metric measurements contained in Fig. 3(a) is shown
in Fig. 3(b).

The BN represents shared knowledge built from a gen-
eralisation of the observed relations between metric mea-
surements from different cloud providers. It can be used by
the optimiser as an alternative to collecting actual metrics
in the event of unavailability of QoS metric monitoring (C3)
and when the cost of customisation does not justify the
benefit obtained. In fact, the application owner may not be

interested in the detailed metrics but only in an aggregated
value that can be provided at no cost starting from other
information already available. Our approach allows for this
kind of specification (Sect. 4.2).

4.2 Specifying deployment and QoM requirements

Application owners wishing to deploy the application spec-
ify the requirements through which the best match with
the cloud providers can be identified. They provide general
information about the application and specific information
about deployment requirements. QoM requirements can be
specified for the whole application and for each microser-
vice. For each microservice, application owners indicate the
id and the number of instances required, together with the
expected variation. This deals with the issue of application
scalability (C4) by providing the optimiser with useful in-
formation. With regard to QoM constraints, the application
owner specifies monitoring system quality requirements,
thus dealing with the issue of mismatched quality of QoS
metrics (C2). Requirements can be specified for the whole
application or at the level of each microservice comprising
the application, allowing different perspectives to be speci-
fied according to the features of the different microservices.
Moreover, requirements can be specified at the metric level
(owners select the set of metrics that they wish to monitor
for each dimension), or at the dimension level (application
owners do not go into the details of the metric selection,
and specify only the dimension to metric translation policy
exploiting the HMD). The translation policies are: (i) ALL:
selects all the metrics related to the dimension; (ii) XOR:
a metric related to the dimension is selected automatically;
(iii) N: at least N metrics for the dimension specified by
the application owner are selected automatically. The poli-
cies deal with the issue of mismatched definitions of QoS
metrics (C1). Finally, application owners specify the level
of precision required for each of the selected dimensions
or metrics: they may require (i) detailed monitoring, indi-
cating the desired sampling rate at which the information
should be collected, or (ii) trends in a specific dimension
or metric (also specifying the update rate for the trend).
In this case, the optimiser will use the BN when solving
the deployment optimisation problem. Application owners
also specify deployment constraints. For instance, they may
ask the same provider to deploy a set of microservices
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1 {"application_owner_request":
2 { "date": "01-03-2017", "user_id": "usr_34675",
3 "requests": [
4 {"microservice": "ms1",...}
5 {"microservice": "ms2",
6 "instance_mean": 10,
7 "instance_var": 5.0,
8 "qom_constraints":
9 {"constraints":

10 [{"dimension": "d0",
11 "name": "status",
12 "trans_policy": "none",
13 "acc": "none", "prec": "none",
14 "metrics":
15 [{"metric": "m8",
16 "name": "CONT CPU usage",
17 "sampling": 60000, "prec": "detailed"

},]},
18 {"dimension": "d1",
19 "name": "Performance",
20 "trans_policy": "ALL",
21 "sampling": 60000, "prec": "detailed"},
22 {"dimension": "d2",
23 "name": "Sustainability",
24 "trans_policy": "XOR",
25 "sampling": 1800000, "prec": "trend"}]}}
26 {"microservice": "ms3",...}],
27 "dep_constraints": [
28 {"ms_list": ["ms1", "ms2"], "type": "same"},
29 {"ms_list": ["ms1", "ms3"], "type": "diff"},
30 {"ms_list": ["ms1"], "type": "pref",
31 "providers":["cp3"]}],
32 "budget":{
33 "currency": "$",
34 "maxbudget": 1000, "estimated": 700}}}

Listing 1. Example of JSON code for a deployment request

(e.g. microservices sharing a large amount of data), or in
contrast they may require the microservices to be deployed
in different locations (e.g. microservices that may interfere
with each other). They may also require a microservice to be
deployed by a specific cloud provider. Finally, application
owners specify budget information, i.e. the budget they are
willing to spend on deployment as well as the maximum
budget that can be allocated for the solution.

An extract from the deployment request, expressed us-
ing JSON, can be seen in Listing 1. Based on the exam-
ple in Fig. 1, the monitoring requirements for the three
microservices comprising the application for analysing eel
movements described above are expressed. With regard to
QoM for MS2, three dimensions are considered, specifying
each metric of interest for Status (only CPU usage), the ALL
translation policy for Performance (both availability and I/O
throughput are of interest for the application), and the XOR
translation policy for Sustainability, specifying that it is an
extra item of information for which no specific metric is
required. A hierarchical rule is applied so that requirements
at the higher level of abstraction are inherited by lower-
level elements if not overwritten. The application owner also
specifies deployment constraints and budget information.
In the example, microservices MS1 and MS2 are deployed
together, while MS1 and MS3 are deployed in two different
locations. Moreover, a specific location is specified for MS1,
e.g. forcing MS1 to be deployed nearer the data sources for
performance reasons. Finally, budget constraints are speci-
fied. The deployment request, generated by the interaction

of the application owner via the Dashboard module, is then
translated by the Requirements translator module into goals
and constraints in a format that can be used by the MOMILP
optimiser.

4.3 Specifying monitoring capabilities
The requirements specified by application owners must be
matched with the capabilities of the various cloud providers
to find the best solution. Providers typically publish infor-
mation about declared QoS. Our approach enhances this
information by also declaring the QoM characteristics of the
cloud provider as well as the set of metric measurements
and their sampling rates. With regard to QoM, several cloud
providers offer different sets of metric measurements at
different conditions in terms of costs and accuracy. The same
cloud provider may offer different monitoring services at
different costs, as discussed in Sect. 2.

In our approach, cloud providers may specify cost infor-
mation defining several budget profiles: the basic profile ex-
presses the cost for each microservice instance for collecting
basic monitoring information at the declared sampling rate.
Premium profiles may offer more accurate monitoring at
a higher cost. Monitoring capabilities are declared through
the set of metric measurements collected by the monitoring
system. Our approach focuses on an extensible monitoring
approach where this set of metric measurements is comple-
mented by custom metrics. In fact, several cloud providers
allow customers to specify custom metrics that can be col-
lected by implementing new hardware or software probes,
the cost of which in some cases can be high. An illustrative
extract from one cloud provider’s registration expressed
using JSON can be seen in Listing 2. The cloud provider’s
monitoring capabilities are translated by the Registrations
processor into a format that can be used by the MOMILP
optimiser. With reference to the running example in Sect. 2,
the cloud provider specifies two of the metrics of interest
(CPU usage and Availability through the Downtime metric
measurement) at the required sampling rate with a premium
profile, while I/O throughput and sustainability metrics
such as Energy are provided as custom metrics (through
the Power Consumption custom metric measurement) at an
additional cost.

5 OPTIMISATION

In this section, we describe the MOMILP optimiser module
of the architecture proposed in Fig. 2. The goal of the
optimiser is to find the best deployment strategy in order
to match the requirements of application owners with the
capabilities of the registered cloud providers. In the opti-
misation phase, all of this information is transformed into
the formulation of a set of goals and a set of constraints of
a MOMILP, exploiting the additional information contained
in the HMD and in the BN. The definition of the goals of
the multi-objective problem is described in Sect. 5.1, while
Sect. 5.2 formulates the optimisation problem.

5.1 Determining goals: monitoring quality and cost
The deployment optimisation problem considered in this
paper has two main goals: to provide a deployment solution
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1 {"cloud_provider_offer":
2 {"date": "01-01-2017", "user_id": "cp_321",
3 "budget_profile": [
4 {"id_profile": "basic",
5 "cost_per_inst": 20, "sampling": 300000},
6 {"id_profile": "prem1",
7 "cost_per_inst": 30, "sampling": 60000},
8 {"id_profile": "prem2",
9 "cost_per_inst": 50, "sampling": 30000}],

10 "basic_metric_measurements": {
11 "cost": 0,
12 "mms": [
13 {"mm": "mm3", "name": "PHY Used Mem"},
14 {"mm": "mm6", "name": "PHY CPU Usage"},
15 {"mm": "mm20", "name": "PHY Uptime"},
16 {"mm": "mm5", "name": "CONT Used Mem"},
17 {"mm": "mm8", "name": "CONT CPU Usage"},
18 {"mm": "mm14", "name": "CONT Uptime"}]},
19 "custom_metric_measurements": {
20 "cost": 5,
21 "mms": [
22 {"mm": "mm0", "name": "PHY Used Storage"},
23 {"mm": "mm0", "name": "PHY Tot Storage"},
24 {"mm": "mm2", "name": "CONT Used Storage"},
25 {"mm": "mm2", "name": "CONT Tot Storage"},
26 {"mm": "mm11", "name": "CONT Throughput"},
27 {"mm": "mm17", "name": "CONT Power"}
28 ]}}}

Listing 2. Example of JSON code for the registration of a cloud provider

that collects as much information as possible (based on the
application requirements) about the microservices by moni-
toring them while meeting budget constraints. We thus face
a multi-objective optimisation problem that requires us to
maximise the monitoring quality for the application owner
for each dimension or metric, and to minimise the cost of the
solution. For the sake of simplicity, we have translated this
multi-dimensional problem into a bi-dimensional problem
in which the maximisation of the monitoring quality for
each metric is aggregated into a single value. In short, the
aim is to maximise monitoring quality while minimising
costs. This simplification makes the solution easier to under-
stand for the application owner who can decide the priority
to give at each of the two perspectives. It is worth noting that
this decision does not affect the complexity of the problem
while improving the interpretation of the results.

5.1.1 Computing Quality of Monitoring
Before formulating the optimisation problem, it is necessary
to formalise how the QoM is computed. As introduced in
Sect. 3, we focus on the completeness as a property of the
monitoring system, which is considered as a combination of
(i) the coverage in the probes available for a cloud provider
compared to the requested metric measurements required
for the application and (ii) the percentage of samples col-
lected by the monitoring system compared to the required
sampling rate. The application owner is asked to define
monitoring requirements supported by the HMD at the
dimension or (optionally) at the metric level. Therefore, it
is important to define how the completeness is computed at
each level of the HMD.

Definition 5. The completeness of a dimension is the mini-
mum completeness of the metrics selected to assess the dimension
according to the translation policy selected by the application
owner.

As described in Sect. 4.2, this can involve either all the
metrics measuring that dimension, a subset of them, or a
specific set selected by the application owner.

Definition 6. The completeness of a metric is the minimum
completeness of the metric measurements used to quantify the
value of the metric in a specific site.

According to the knowledge base, several metric mea-
surements are needed to compute a metric. For each cloud
provider, the metric measurement with the lower quality is
the one that influences the completeness of the whole metric.

Definition 7. The completeness of a metric measurement m
for a specific cloud provider p, indicated as a(A)

mp , is proportional
to the ratio between the sampling rate required in the deployment
request and the sampling rate of the probe provided by the cloud
provider for measuring that metric measurement.

Completeness may also depend on the variability of the
metric measurement. In fact, if the metric measurement is
almost steady, monitoring with a lower sampling rate does
not affect completeness. Contrairwise, meeting the required
sampling rate is important in the case of a highly variable
signal. Thus, completeness is computed considering the
entropy of the monitored property, estimated using the
Kullback-Leibler divergence (KLD) [10] [11]: a specialisation
of the Rényi entropy [12]. KLD expresses the divergence
between two signals, in terms of the amount of information
gained using a signal, P , compared to another signal, Q.
In our scenario P is the probability distribution of samples
at the required sampling rate and Q is the probability
distribution of samples at the sampling rate provided by
the cloud provider. The Kullback-Leibler divergence (KLD)
between P and Q is expressed as:

D(P ||Q) =
∑
i

pi log
pi
qi

(1)

To express the completeness as proportional to the ratio
between the required sampling rate and the sampling rate
offered by the monitoring system, and to the loss of infor-
mation, we can model completeness as follows:

a(A)
mp = 1− sT · (1 exp−D(P ||Q)) (2)

where sT = (1 − min(1, TPTQ ) with TP the sampling rate
required by the application and TQ the sampling rate offered
by the cloud provider. According to Eq. 2, completeness of
a metric measurement is dependent on sT in a way that
is proportional to the loss of information in downsampling
the metric measurement. If the metric measurement is not
provided (i.e., sT = 0 and D(P ||Q) = 0) completeness
for the considered metric measurement is 0. If the metric
measurement is provided at the required rate (sT = 1 and
D(P ||Q) = 0), completeness is 1. For values in between, the
relevance of sT in computing completeness is proportional
to the loss of information: completeness is 1 if the two
distributions are equivalent (D(P ||Q) = 0) and 0 if the
distributions are completely different (D(P ||Q) → ∞).
KLD computation can be easily evaluated at design time
by appropriately sub-sampling a monitoring set of samples
generated by monitoring the application in a test environ-
ment.

If the cloud provider does not supply any information
about a metric measurement, then a(A)

mp = 0. In this case, the
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cloud provider may implement a new probe to monitor the
metric measurement at an additional cost.

Definition 8. The completeness of the implementation of a probe
for monitoring a metric measurement m for a specific cloud
provider p, indicated as a(I)

mp, is defined as proportional to the ratio
between the sampling rate required in the deployment request and
the sampling rate the probe implemented by the cloud provider for
measuring that metric measurement. The gain in completeness of
implementing a probe for a cloud provider is defined as:

∆a(I)
mp = a(I)

mp − a(A)
mp

that is positive only if a physical sensor is not yet implemented or
if its completeness is lower than the completeness required in the
deployment request.

As before, a(I)
mp can be expressed as described in Eq. 2.

If a probe is not available for a metric measurement,
the proposed solution can instead estimate the trend for
that metric measurement from the information coming from
other probes by exploiting the knowledge contained in the
BN metrics described in Sect. 4.1. This is also an alternative
if the application owner has indicated the value trends as
the level of precision for that metric or dimension in the
deployment request. In this case, even if a probe is available,
the cost of using estimated metric measurements may be
lower than the direct monitoring, if it is based on metric
measurements already collected by the monitoring system.

Definition 9. The completeness of estimating the trend of a
metric measurement m for a specific cloud provider p, indicated as
a

(E)
mp , is defined as proportional to the ratio between the sampling

rate required in the deployment request and the minimum sam-
pling rate of the probes involved in the estimation (all the parents
of the node to be estimated in the BN). The gain in completeness
of estimating a probe for a cloud provider is defined as:

∆a(E)
mp = a(E)

mp − a(A)
mp

that is positive only if a physical sensor is not available or if its
completeness is lower than or equal to the completeness required
in the deployment request.

Detailed algorithms for the completeness computation
with a simpler formulation are described in [4].

5.1.2 Deployment cost
The other perspective to consider is the total cost of a de-
ployment solution that is obtained by summing the cost of
deployment of all the microservices and the cost of monitor-
ing, estimating and implementing probes. The information
about costs is contained in the cloud provider registration
and is taken into consideration by the optimiser.

5.2 Formulation of the optimisation problem
In this section, we provide a formulation of the optimisation
problem, using the following notation:
• S is the set of all microservices with cardinality S.
• P is the set of all cloud providers with cardinality P .
• D is the set of all dimensions with cardinality D.
• M is the set of all metrics with cardinality M .
• Md, d = 1 : D is the set of all metrics that contributes

to dimension d, the cardinality is Md ∀d = 1 : D. These

sets are not a partition since a metric can contribute to
the completeness of several dimensions.

• MM is the set of all metric measurements. The cardi-
nality of this set is M̌ .

• MMm, m = 1 : M is the set of metric measurements
that contributes to metric M . The cardinality of this set
is M̌m. These sets are not a partition since a metric
measurement can contribute to the completeness of
several metrics.

• SP is the set of couples of microservices (s0, s1) such
that microservice s0 and s1 must be deployed by using
the same cloud provider. The cardinality is SP 9.

• DP is the set of sets of microservices dp = {s0, s1, . . . }
such that all of them must be deployed by using differ-
ent cloud providers. The cardinality is DP .

• SR ⊆ S × 2P is the set of couples (s, {pi}) such that
microservice s must be deployed by using one cloud
provider in the set {pi}.

• MR ⊆ V ×M is the set of couples (s,m) such that we
want to measure the metric M for microservice s.

• DV0 is the set of all triples (s ∈ S, d ∈ D, nd ∈ N) such
that for microservice s the application owner wants
to estimate at least nd metrics for dimension d. Its
cardinality is DV0.

• DV1 is the set of couples (s ∈ S, d ∈ D) such that for
microservice s the application owner wants information
about no more than 1 metric. Its cardinality is DV1.

For the parameters, we use the following notation:

• λi ∀ i = 1 : D is the relative importance of a dimension
with respect to the others. We assume that

∑D
i=1 λi = 1

and that the application owner specifies these values.
This last assumption is not strictly necessary as appli-
cation owners implicitly describe these values from the
minimum completeness requested for each metric (the
parameters αm in the following).

• Fp, ∀ p = 1 : P is the cost of deployment of a
microservice by using cloud provider p.

• ns(ω), ∀ s = 1 : S is the number of instances of
microservice s. It is a random variable.

• CImp ∀ m = 1 : M̌, p = 1 : P is the cost that cloud
provider p charges for implementing a probe for metric
measurement m.

• CEmp ∀ m = 1 : M̌, p = 1 : P is the cost that cloud
provider p charges for estimating a probe for metric
measurement m.

• a
(A)
smp ∈ [0, 1] ∀ m = 1 : M̌, p = 1 : P is the

completeness of metric measurement m supplied by
cloud provider p for microservice s.

• ∆a
(E)
smp ∈ [0, 1] ∀ m = 1 : M̌, p = 1 : P is the im-

provement in completeness obtained if cloud provider
p evaluates metric measurement m for microservice s.

• ∆a
(I)
smp ∈ [0, 1] ∀ m = 1 : M̌, p = 1 : P is the im-

provement in completeness obtained if cloud provider
p implements a probe for metric measurement m for
microservice s.

9. Although the constraint is based on couples, also cases in which
more than two microservices must be deployed on the same cloud
can be expressed by using several couples (e.g., including (s0, s1)
and (s1, s2) in SP requires that all the three microservices must be
deployed on the same cloud).
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• β is the budget that the application owners estimate,
which we assume to be different from the maximum
amount that they wish to pay.

• αM ∀ m = 1 : M is the minimum degree of complete-
ness that we require for metric M .

• ρ is the percentage of the budget such that the applica-
tion owners are not willing to pay more than β + ρβ.

We use the following variables:
• xsp, binary variable, true if microservice s is deployed

by using cloud provider p.
• ysmp, binary variable, true if microservice s is deployed

by using cloud provider p and metric measurement m
is made because not available (option M).

• zsmp, binary variable, true if microservice s is deployed
by using cloud provider p and metric measurement m
is estimated because not available (option E).

• wMs, binary variable, true if the completeness of metric
M is greater than zero for microservice s.

• l, which measures by how much the solution imple-
mented exceed the estimated budget.

Our problem 10 is then:

max. λ1

S∑
s=1

min
M∈M1

min
m∈MMM

P∑
p=1

(a
(A)
smpxsp + ∆a

(E)
smpz

s
mp + ∆a

(I)
smpy

s
mp)+

· · ·

+ λD

S∑
s=1

min
M∈MD

min
m∈MMM

P∑
p=1

(a
(A)
smpxsp + ∆a

(E)
smpz

s
mp + ∆a

(I)
smpy

s
mp)

minimize l
(3)

subject to: P∑
p=1

xsp = 1 ∀ s ∈ S (4)

z
s
mp + y

s
mp ≤ xsp ∀ p ∈ P, s ∈ S (5)

asmp ≤ 1− zsmp ∀ p ∈ P, m ∈ MM, s ∈ S (6)
xsp = xs′p ∀ p ∈ P, (s, s

′
) ∈ SP (7)∑

s∈dp
xsp ≤ 1 ∀ p ∈ P, dp ∈ DP (8)∑

p∈(s,{p})∈SR

xsp = 1 ∀ (s, ·) ∈ SR (9)

wMs = 1 ∀ (M, s) ∈ MR (10)∑
M∈Md

wMs ≥ nd ∀ (s, d, n) ∈ DV0 (11)

∑
M∈Md

wMs ≥ 1 ∀ (s, d) ∈ DV1 (12)

S∑
s=1

P∑
p=1

[
Fpns(ω)xsp +

M̌∑
m=1

CEmpz
s
mp +

M̌∑
m=1

CImpy
s
mp

]
≤ β + l (13)

αMwMs ≤ min
m∈MMM

P∑
p=1

a
(A)
smpxsp + ∆a

(E)
smpz

s
mp+

+ ∆a
(I)
smpy

s
mp ∀M ∈ M, s ∈ S.

(14)

xsp ∈ {0, 1} ∀ s, p; wMs ∈ {0, 1} ∀ M, s; l ∈
[
0, ρβ

]
;

z
s
mp ∈ {0, 1} ∀ m, p, s; y

s
mp ∈ {0, 1} ∀ m, p, s

The objective function (3) maximises the completeness
of the dimensions and minimises the difference between the
actual cost and the budget β estimated by the application
owner. Please, notice that since different users may have dif-
ferent sensibilities to budget and completeness, we consider

10. The proposed formulation assumes that the utility of the opti-
miser can be well approximated by a linear function as it is reasonable
to assume that the second order iterations between the completeness of
different metric measurements is negligible.

a multi objective optimisation problem. Constraint (4) en-
sures that every microservice must be deployed. Constraint
(5) entails that, only in the site where the microservice is
deployed, a metric measurement might be implemented or
estimated, and that it cannot be implemented and estimated
at the same time. Furthermore, constraint (6) entails that
a metric measurement can be estimated if and only if the
cloud provider does not have any measure related to the
metric measurement in the site. Constraints (7) and (8) mean
that the application owner can require some microservices
to be deployed by using the same cloud provider or by
using different cloud providers. Constraint (9), in contrast,
allows the application owner to specify that a microser-
vice can be deployed only in a particular subset of cloud
providers. For example, constraint (9) can be used to prevent
a microservice from being deployed using cloud providers
with a low QoS. Constraints (10), (11), and (12) allow the
application owner specify which metrics must be measured
for a given microservice, if for a certain microservice the
application owner wants to measure at least n metrics for
a given dimension or if he wants to measure not more
than one metric for a given dimension. Finally, constraint
(13) models the cost of the services and constraint (14)
imposes a minimum degree of completeness for a metric
if the application owner wants to measure it. Note that the
variable l is constrained to lie within the interval [0, ρβ],
thus a solution with a cost of more than β(1 + ρ) is not
acceptable for the application owner. We have chosen to not
set the budget constraint as a “hard” constraint in order to
allow for flexibility in terms of cost.

It should be noted that, although the focus of this paper
is QoM, additional constraints on QoS (e.g., requirements on
response time or availability) can be easily added to the for-
mulation of the optimisation problem by: (i) considering P
to be the set of all cloud providers that fulfill the constraints
of QoS; (ii) enriching the model with constraints related to
QoS.

Problem (3)–(14) is non-linear but can be linearized by
adding two sets of variables vMs and uds. The former repre-
sents the minimum completeness of metric M for microser-
vice s and the latter represents the minimum completeness
for dimension d for microservice s. The objective function
expressed by Eq. 3 thus becomes:

max.
∑D
d=1 λd

∑S
s=1 uds min. l

The constraints of the optimisation problem (Eq. 4 to Eq.
13) remain the same, with the exception of Eq. 14:

αMwMs ≤ vMs ∀M ∈M, s ∈ S. (15)

vMs ≤
P∑
p=1

a
(A)
smpxsp + ∆a

(E)
smpz

s
mp+

+ ∆a
(I)
smpy

s
mp ∀M ∈M, s ∈ S.

(16)

uds ≤ vMs ∀d ∈ D,M ∈Md, s ∈ S. (17)

vMs ∈ [0, 1] ∀ M, s;uds ∈ [0, 1] ∀ d, s

This problem is a multi-objective stochastic mixed-
integer linear program that can be optimally solved by
means of stochastic programming techniques. However, we
have chosen to consider the expected value problem (i.e.,
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the deterministic problem obtained by considering the mean
value of each random variable in the problem). Hence, the
only change is in constraint (13), which becomes:

S∑
s=1

P∑
p=1

[
Fpn̄sxsp +

M̌∑
m=1

CEmpz
s
mp +

M̌∑
m=1

CImpy
s
mp

]
≤ β + l

(18)
where the n̄s are the expected values of the random vari-
ables ns. This approximation was chosen as developing a
stochastic analysis of the problem is beyond the scope of the
present paper. By means of this approximation we obtain a
multi-objective mixed-integer problem.

6 VALIDATION

Since Problem (3)-(14) is multi-objective, we compute the
Pareto front solutions (i.e., the set of solutions such that
there are not better ones given the available set of resources)
by using the ε constraint method. This is the standard
approach to find all the Pareto front solutions by solving
single objective problems obtained by considering one ob-
jective functions and by bounding the other one. For a more
detailed explanation of this method and its properties, see
[13]. Specifically, we choose to maximise the completeness
using extra cost as a constraint, i.e. l ≤ ε. In order to find all
the points, we solve the problem with the constraint l ≤ ρβ
and we obtain the extra cost of the optimal solution l∗.
We then solve the problem again by adding the constraint
l ≤ l∗−0.01. We choose 0.01 since any other smaller change
in the value of l has no sense (we do not have one thousand
of euros). We continue in this way until l∗ = 0 or the
problem is unfeasible (i.e., we do not have enough money to
satisfy all of the constraints). As we add the constraint l ≤ ε,
we can delete the variable l by replacing constraint (18) and
l ≤ ε with

S∑
s=1

P∑
p=1

Fpn̄sxsp +

M̌∑
m=1

P∑
p=1

CEmpZmp+

+

M̌∑
m=1

P∑
p=1

CImpYmp ≤ β + ε.

(19)

In this way, at each step we solve an integer problem
whose complexity is O(2max[MS,SP,M̌SP ]). To do so, we
implement an exact algorithm using a C++ software inte-
grated with the commercial software Gurobi11 on an Intel
R CoreTMi7-5500U CPU @2.40 Ghz with 8 GB RAM and
Microsoft Windows10 Home installed. On top of this, we
developed a web application prototype using Node.js12.

To test our framework we executed several validations.
First of all, we clarify the practical implications of the
proposed approach applying it to the running example
(Sect. 6.1). Then, we apply the framework to a more realistic
scenario where we compare three executions: starting with
the same problem size and changing the requirements we
show how the constraints expressed by the application
owner and the scalability of the microservices influence the
solution (Sect. 6.2). Finally, in Sect. 6.3 we check the compu-
tational complexity and the scalability of the framework.

11. http://www.gurobi.com
12. Node.js and C++ source code, is available at https://bitbucket.

org/plebanip/optimon

Status Performance Sustainability

MS1 Free Storage (10m, D) ALL (10m, D) -

MS2 CPU Usage (1m D) ALL (1m, D) XOR (30m, T)

MS3 CPU Usage (1m D),
Mem Usage (5m, D)

Avail. (5m, D) -

TABLE 1
Summary of QoM requirements

Since, to the best of our knowledge, no other approach
focusing on the systems monitorability matching exists in
the literature, we cannot compare our solution directly with
other approaches. For this reason, our experiments aim to
demonstrate that the time required to solve the problem
is reasonable for supporting the application developer in
deciding where to deploy the microservices as well as the
effects in changing the constraints. Finally, it should be
noted that, since the exact solver Gurobi is able to solve
even the most complex feasible instances in a reasonable
amount of time, there is no point in applying heuristics to
the problem. We are not looking for faster solution methods
that provide an approximated solution. We have chosen
Gurobi as a solver for its performance and flexibility.

6.1 Deployment optimisation for the running example

To show how the framework can be used in a real-life
scenario, we refer to the microservice-based application
represented in Fig. 1. For convenience, a summary of the
requirements expressed in the deployment request (Listing
1) is shown in Tab. 1. As described in Sect. 4, the capabilities
of the registered Cloud Providers are stored in the Registra-
tions DB. During the registration phase the cloud provider
matches the metric measurements that it offers with the
metric measurements expressed in the HMD. By way of
example, we matched the metrics provided by Google Stack-
driver13 with the HMD as shown in Tab. 2. A comparison
between the capabilities of two cloud providers can be
found in Tab. 314. Given the request, the total estimated cost
for deploying the application on Google is around $1.50 due
to the need to collect a custom metric for the 5 to 15 instances
of MS2. In contrast, on Amazon a premium plan is required,
with an estimated cost of $35. However, with Google full
completeness cannot be obtained since the power metric is
not available and will be estimated exploiting the knowl-
edge contained in the BN (see Fig.3(b)). A solution may be to
implement a mixed deployment approach, deploying MS2
on Amazon, with a higher cost but greater completeness,
and MS1 and MS3 on Google. This is feasible if the costs do
not exceed the budget. If, instead, the budget is set to $25
(for example), deployment must be exclusively on Google,
with limitations on QoM.

6.2 Examples of deployment optimisation

The problem discussed in Sect. 2 is too limited to be realistic
for any validation process that wishes to analyse the scal-
ability of the approach. We therefore considered a problem

13. https://cloud.google.com/monitoring/api/metrics
14. These costs were estimated using the tools provided by

the two cloud providers: Amazon (https://calculator.s3.amazonaws.
com/index.html) and Google (https://cloud.google.com/products/
calculator/)
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Metric Measurement Google Stackdriver

Total Storage disk/bytes_total

Used Storage disk/bytes_used

CPU Usage CPU/utilization

Used Mem memory/bytes_used

I/O Throughput disk/read_ops_count

Uptime uptime

Power NA
TABLE 2

Match between Google Stackdriver metrics and HMD metric
measurements

Google Cloud Amazon

Coverage all except power all

Sampling Rate 60 sec free 5 min free, 60 sec
2.10$ x inst

Custom Metrics 0.010$ x metric (60s) 0.10 x metric (60s)
TABLE 3

Cloud provider capabilities comparison

with 100 microservices, 10 cloud providers, 10 dimensions,
30 metrics (about 3 metrics for each dimension), and 45
metric measurements (about 1.5 metric measurements for
each metric), with an additional budget set to $160. It is
pointed out that this additional budget is an extra amount
of money that the application owner is willing to spend in
order to obtain greater completeness.

As a first step, we compared the outcome of the frame-
work for three different scenarios, differing in terms of
the underling knowledge base and the parameters of the
deployment request. In particular, in case 1 the knowl-
edge base has 10 metric measurements per metric and 10
metrics. In this situations, the productivity of the investment
is higher: with less budget the user increases the quality of
monitoring of more metric (see Eq. (14)), thus increasing the
dimension of the solution space. In case 2, the knowledge
base is characterized by 5 metric measurements per metric
and 20 metrics and the application owner expresses stricter
requirements for QoM than in case 1. Finally, in case 3
the knowledge base consists of 2 metric measurements per
metric and 50 metrics. Fig. 4 illustrates the three Pareto
front computed from those instances. Each point in the
Pareto front represents a trade-off between the QoM and
the budget. The average time to compute a single point
of the Pareto front is about 2.88 sec, while the average
time to compute the whole Pareto is 172.53 sec (less than
3 minutes). The fronts are neither concave nor convex, as
a result of the integrality requirements of some variables.
It will be noted that the QoM is directly proportional to
the budget (i.e., the more money available, the greater the
achievable completeness). It is pointed out that all the curves
can reach the 100% completeness with a sufficiently large
additional budget only if a feasible solution exists. In case
2, the maximum completeness is reached with a budget
lower than the maximum, while in case 1, the maximum
completeness obtained with the given budget is around
0.9. This might suggest to the developer to try increasing
the budget to obtain higher completeness. An interesting
case can be observed in case 3: here the completeness
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Fig. 4. Three Pareto fronts obtained by using the ε constraint method.

stops increasing with an additional budget of $140 due to
the constraints expressed in the request (related both to
QoM and to deployment), which make several solutions
unfeasible. In this case, the developer can choose to relax
some constraints in order to seek a better solution.

As already discussed in the paper, the problem that we
are solving is subject to uncertainty due to the variation in
the number of instances for each microservice according to
the provided distribution. We studied how the cost of the
solutions varies according to the variation in the number
of instances. Starting with the problem size discussed in
the previous experiment, we simulated 5, 000 scenarios ex-
tracting the number of microservices from their distribution
and solving the expected value problem (taking the average
instance value as a benchmark). If the application owners
are more risk adverse, they can use some quantiles instead
of the expected value. The two distributions obtained using
the two approaches are shown in Fig. 5. The lines represent
the density of the normal distributions that best fit the data.
As can be observed, the mean value of the cost distribution
obtained from the solution of the average value problem is
1% lower than the one from the solution obtained by using
the 0.9 quantile. This difference reduces the length of the
right tail of the distribution of the costs. Furthermore, in
order to verify that this increment in the cost decreases the
risk of paying more, we define a risk measurement close
to the Expected Shortfall (interested readers are referred to
[14]), consisting of the expected value of the right tail of the
distribution above a certain quantile. If we call Xα the set of
all the observations greater than the quantile qα, we define
our risk indicator ÊSα as follows:

ÊSα =

∑
x∈Xα
|Xα| . (20)

By computing ÊS0.9 we see that it decreases in the
distribution of the costs obtained by using the 0.9 quantile
by the 6%. We shall discuss the stochastic nature of the
problem in more details in a future paper.

6.3 Computational complexity and scalability
To validate also the scalability of the proposed solution,
we start with a problem with the same dimension as the
one described in Sect. 6.2, and we explore the effect on
the execution time required to find the Pareto front while
increasing the size of three variables: (i) number of metric
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Fig. 5. On the left: cost distribution of the expected value problem, on the right: cost distribution of the 0.9 quantile value problem

measurements (from 45 to 800); (ii) number of microservices
(from 100 to 3,500); (iii) number of cloud providers (from
10 to 200). When we increase the number of metric mea-
surements, we necessarily increase the number of metrics
required to maintain a reasonable knowledge base. In partic-
ular, we assume that multiplying by n the number of metric
measurements, we also multiply by n/2 the number of met-
rics. In solving the problem, the computation of 10 points
of the Pareto front are assumed to be sufficient to allow
the application owners to identify the solution that fits their
needs, as these points satisfy requirements in terms of QoM
and cost. Fig. 6 shows the results of the experiments where
the values are obtained as the mean of 20 observations. As
can be observed, the time for the computation of the Pareto
front is almost linear with the increase in microservices
(maximum time 220 seconds) while it grows exponentially
with the number of metric measurements (maximum time
55 seconds). As concerns the number of cloud providers,
we observed a linear growth and solving the problem with
200 cloud providers required 300 seconds. However, with a
more realistic number of 50 cloud providers, the problem is
solved in 50 seconds. In order to discover the scalability
limits for our approach, we also considered an extreme
setting, with 800 metric measurements, 100 microservices,
and 10 cloud providers, taking 3,400 seconds (around 58
min). If we take 3 min as a maximum time limit, a feasible
problem size might include 100 metric measurements, 1,500
microservices and 50 cloud providers, which is a more than
reasonable configuration.

It should be pointed out that this solution method is used
at design time, hence a response time measured in minutes
and not seconds is acceptable. The resolution time allows
also the application owner to iterate the process several
times, changing requirements by either adding or relaxing
constraints, in order to find the most suitable solution.

7 RELATED WORK

The work presented in this paper touches upon several as-
pects: monitoring with heterogeneous cloud providers, cus-
tomisability of monitoring metrics, and monitoring-aware
optimisation of application deployment.

The challenges and patterns for monitoring microser-
vices are described in [15]. In an application split into several
microservices, the authors pointed out that it is difficult to
detect the cause of a failure at run time. In [16], the authors
provide a model for guiding decisions with a view to select-
ing the best monitoring system for a specific microservice ar-
chitecture. Dealing with the development of applications re-
quiring the interaction with different providers increases the
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Fig. 6. Time required to find a single Pareto Point in relation to variations
in number of metric measurements and microservices.

complexity of managing the application itself. As discussed
in [17] there is a rich variability in the configuration options
offered by cloud providers, and managing this variability is
not an easy task. As in our work, the authors support the as-
signment of microservices to cloud providers with a match-
making mechanism between the cloud provider capabilities
and the developer requirements but, unlike our approach,
they do not focus on the monitoring aspects. Although [18]
points out that this is one of the most important issues in
microservices literature, most existing studies analyse how
to measure a single or several microservices to assess to
what extent the SLAs are satisfied [19] or how to manage the
resulting application [20]. The problem of dealing with het-
erogeneous cloud providers is not considered at all. When
such heterogeneity is taken into account, the approach is
usually provider-centric and focuses on solutions to mask
the heterogeneity of the adopted monitoring platforms [21],
[22] by means of a common interface. Our aim is to consider
multi-cloud solutions with a client-centric perspective: the
end-user is the application that coordinates access to and
utilization of different cloud providers to meet the applica-
tion requirements, as also discussed in [23]. Here, a cloud
broker, as seen by the NIST [24], facilitates the relationships
between providers and the application owners (consumers)
by providing an intermediation service. In this paper, the
matchmaker (a sort of cloud broker) supports the cloud
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consumer in the deployment of the application by providing
a deployment strategy that optimises the monitoring capa-
bilities required by the application. Dealing with different
providers entails mediating between different models used
to describe dimensions and monitoring metrics. Here, se-
mantic web techniques can enable the knowledge base to
be developed and managed. Indeed, semantic technologies
are gaining increasing attention also in cloud computing
sphere [25] and, specifically with regard to monitoring is-
sues. In [26], linked data are used to handle the heterogene-
ity of the collected data, whereas [27] provides a semantic
meta-model for classifying dimensions and metrics.

Metric customisability is a relevant issue as witnessed
by the existence of several cloud platforms, differing in
terms of: (i) the set of metrics provided by the monitoring
system; (ii) sampling times for each metric; (iii) the costs of
hosting the application (or microservice); (iv) the flexibility
in terms of the option of adding new metrics or reducing
sampling rate at an additional cost. On-demand, customised
metrics can be requested on several platforms and moni-
toring solutions like Nagios, PCMONS, and Sensus15 [28].
Nonetheless, application owners may be unable to find the
provided metrics. Some work has modelled and discovered
the relations between different metrics that can contribute
to a knowledge base for predicting the value of a missing
metric. In this way, the application owner may be able to
collect information about the desired metric even if the
actual value is not directly provided by the monitoring
system. In [29], a framework for building a dependency
tree of mutual influences between metrics is proposed. The
tree is created using machine learning, while the influen-
tial factors among indicators are statically and manually
defined. Google [30] employs neural networks for modeling
and predicting the outcome of some modifications over the
monitored variables. In [9] the authors automatically extract
relations between metrics provided by the monitoring sys-
tem of a data centre and represent their relations through
a BN automatically created from historical values. The BN
adapts to the updates that can occur in the data centre and is
continuously refined. The approach can be used to express
trends about the behaviours of the metrics and predict their
future values from other metrics that have a causal relation
with it. In this work, we have modified this approach to
enable users to predict missing metrics.

With regard to optimising application deployment, our
work takes its cue from the vast literature about the de-
ployment of VMs in cloud environments. In [31] a multi-
objective algorithm is employed for VM placement in a
cloud system. The algorithm minimises overall resource
wastage and power consumption by providing a Pareto
set of solutions. In [32], a greedy allocation algorithm is
used to optimise the cloud provider’s profit, considering en-
ergy efficiency, virtualisation overheads, and SLA violation
penalties as decision variables. In these approaches, a single
cloud provider is considered, thus monitoring services are
not compared. The issues of deployment in multi-cloud en-
vironments is discussed in [33], using a multi-cloud deploy-
ment in a federated cloud with a view to maximising profit

15. https://www.nagios.org; https://code.google.com/p/pcmons;
https://sensuapp.org

for cloud providers. To achieve the automatic deployment in
this context, an approach to describing customers’ desired
application deployments is provided as a topology model.
Similarly, the providers can adapt this description to their
capabilities. With regard to optimised deployment driven by
the monitoring capability, to the best of our knowledge, our
previous paper on this topic [4] is the first one to address this
issue. Nevertheless, a strand of optimisation literature deals
with the optimal deployment of cloud-based applications in
servers, whose main goal is to maximise the reliability of
the application. Interested reader, are referred to [34] and
the references therein.

8 FINAL REMARKS AND FUTURE WORK

In this paper we have proposed an architecture for man-
aging the deployment of microservice-based applications
involving several cloud providers. The approach provides
a set of modules to manage both application owner re-
quirements and cloud provider monitoring services semi-
automatically, adopting a MOMILP to identify the best so-
lutions for matching those requirements and monitoring ser-
vices. The architecture stresses the importance of the QoM
offered by the different cloud providers. This aspect is rel-
evant since monitoring data enable the application owners
to analyse the efficiency and effectiveness of the application
and to make informed decisions regarding improvements
and modifications. The optimiser also considers the vari-
ability in terms of number of instances to be deployed for
each microservice comprising the application and makes it
possible to specify requirements for microservices at differ-
ent levels of detail. Our results shown that the approach
proposed here is capable of providing a solution within a
reasonable time interval for realistic application sizes and is
also scalable to larger numbers of microservices, of cloud
providers, and of metrics provided by their monitoring
system. A prototype of the framework, with the capability
to translate monitoring services supplied and demanded
offers in an optimisation problem and find the Pareto front
according to the constraints, has also been implemented.

In future work, we plan to develop an improved cost
evaluation model for the implementation of metrics when
they are neither available nor estimated. Such a model
may involve third-party services, such as New Relic, which
provides external support in measuring those metrics that
impact costs and completeness. From an implementation
standpoint, the possibility of directly connecting our pro-
totype with cloud providers in order to be informed about
their services and potentially to integrate the approach with
TOSCA [35] will be investigated. Finally, the prototype
will be extended to consider monitoring services offered
along with Quality of Infrastructure and Quality of Service
requirements as additional constraints.
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