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Abstract. In smart environments, a big amount of information is gen-
erated by sensors and monitoring devices. Moving data from the edge
where they are generated to the cloud might introduce delays with the
growth of data volume. We propose an adaptive monitoring service, able
to dynamically reduce the amount of data moved in a fog environment,
exploiting the dependencies among the monitored variables dynamically
assessed through correlation analysis. The adaptive monitoring service
enables the identification of dependent variables that can be transmit-
ted at a highly reduced rate and the training of prediction models that
allow deriving the values of dependent variables from other correlated
variables. The approach is demonstrated in a smart city scenario.

1 Introduction

Monitoring Data are generated by sensors used to monitor an environment of
interest, that are intended to be utilized by different applications deployed across
edge/IoT, fog, and cloud layers. In a smart city, data collected from scattered,
different places, converge into a unified monitoring data service used by different
applications. The volume of data collected by IoT and sensors makes it time
consuming to move all data from the edge where they are generated to the cloud
for analysis, likely introducing critical delays. It is important to reduce the size
of the data to be moved in order to make this task more agile [1]. As described
in Section 2, existing approaches focus on the definition of possibly adaptive
sampling rates for each variable. As illustrated in [2, 3], variables collected by a
monitoring system may be not independent. In this paper, we propose a service
oriented approach to reduce the data volume by exploiting hidden relations
among data, distinguishing between regressor variables and dependent variables,
for which it is possible to significantly reduce the volume of transmitted data.
The paper is organized as follows. Sect. 2 analyzes the state of the art. Sect. 3
describes the overall approach and Sect. 4 illustrates the monitoring reduction
service. In Sect. 5 we apply the framework to a smart city scenario.

2 State of the Art

Data reduction in Big Data systems generally reduces either data storage, in-
network data transmissions, or data redundancy [4]. The reduction methods
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Fig. 1. Adaptive Monitoring Service

include compressing raw data, decreasing the data sampling rate, and reducing
the overall data according to the network topology. The work of [5] proposes
a knowledge-driven data sharing framework in IoT-based Big Data systems,
transmitting knowledge patterns instead of raw data. In our approach we propose
to dynamically derive the relationships among variables, based on the actual
data, rather than on predefined knowledge patterns. The problem of adaptive
monitoring has been widely discussed in the literature [6]. The authors review
monitoring tools and techniques for Fog Computing, and consider the reduction
in the amount of network traffic as one of the challenges in current monitoring
systems. A solution is proposed in [7], where a lightweight adaptive monitoring
framework suitable for IoT devices is proposed. The authors reduce the data
volume considering an adaptive sampling and (ii) an adaptive filtering. Similarly
to [8], the focus is on the adjustment and reduction of single signals generated by
sensors, without considering the possible dependencies existing between them.

Smart cities and smart homes are typical applications of the fog comput-
ing technology. In [9, 10], architectures for optimizing near real-time services for
prediction analytics are discussed. In order to show the performance of our ap-
proach, we applied the AMS to a real dataset representing a smart city scenario.

3 Adaptive Monitoring Service

The proposed Adaptive Monitoring Service (Fig. 1) has the goal to reduce moni-
toring data deriving and exploiting correlations among monitored variables (i.e.,
sensor-generated data). The first step is the Reduction Plan Generation (a),
where historical data are analyzed to discover relations among variables and to
generate a Reduction Plan, which indicates the variables that must be collected
(regressor variables - RV) and the ones (dependent variables - DV) that can be
reconstructed from the values of the collected ones. Each variable can therefore
be monitored in three different modalities: (i) EMPTY means no data are trans-
mitted; (ii) NORMAL means all the produced data are transmitted; and (iii)
REDUCED means a highly reduced down-sampled set of data is transmitted,
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used only for validation purposes. To derive the prediction models, i.e. functions
to reconstruct dependent variables from regressor variables, a Reduction Plan
Training (b) phase is performed. An Adaptive Monitoring Service Deployment
(c) phase decides how to deploy the services that are needed to enact the Reduc-
tion Plan on a fog hierarchical infrastructure, trying to reduce the overall volume
of data traveling from the edge of the network to the cloud. The optimization
of this step will be analysed in future work. The Reduction Plan Enactment (d)
transforms the raw data produced by sensors into a reduced dataset. Monitoring
can be enhanced considering the variability of the environment[8]. During the
collection of reduced data, several events might occur that require adjustments.
Therefore, the AMS execution requires a continuous validation phase, where data
of dependent variables are collected at a highly reduced frequency only to verify
the validity of the prediction functions. Minor events might require a refinement
of the prediction models (re-training). However, since the observed environment
is dynamic and relations among variables might change, the derivation of a new
Reduction Plan might also be needed in some cases.

4 Monitoring Data Reduction

Dependencies between variables are represented through a Direct Acyclic Graph
(DAG), derived from the correlation matrix, i.e., the matrix obtained by com-
puting the correlation between each pair of variables collected by the monitoring
system, orienting the edges by discovering causal relations, using the technique
described in [2]. The approach discovers relations between variables by comput-
ing the Pearson correlation coefficient between each couple of variables, applying
a threshold to filter weak correlations, and deriving causal dependencies through
a heuristic search algorithm. Once dependencies are detected, prediction can be
provided by building a regression formula able to properly combine all the con-
curring variables to reconstruct a missing signal. In this way, some of the data
produced by sensors can be omitted and reconstructed after the transmission if
needed, thus reducing the volume of the data to move.

Before going into the details, we introduce some terminology. We denote the
set of all monitoring variables as U , which is split into two sets: (i) Regressor
Variable Set (RS), composed of all the variables that cannot be derived from
other information (independent variables); (ii) Dependent Variable Set (DS),
composed of variables derivable from other monitored information. According to
this, U = RS

⋃
DS. Each variable in DS depends on the value of other variables

- referred to as Correlated Variables Set (CV S) - and can be reconstructed
using a regression function. Variables in CV S can be both regressor variables
rv ∈ RS and dependent variables dv ∈ DS. In Fig. 1(a) we show an example
with six variables and their dependencies. Variable v6 is depending both on v4
and v5, therefore the CVS for v6 is {v4, v5}. In the figure, we also see that v4 is a
regressor variable while v5 is a dependent variable, depending on v3. So in this
case we have RS = {v1, v2, v4} and DS = {v3, v5, v6}. The correlated variable
sets are cvs(v3) = {v1}, cvs(v5) = {v3}, cvs(v6) = {v4, v5}.
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As described in [2], the dependencies between monitoring variables are not
static (e.g., a sensor might stop working for a period of time, an existing sensor
might be moved from a location to another, a new sensor might be installed).
The CVS used to predict a variable in DS can change accordingly. Thus, we
model an element of CVS as a variable cvst,k ⊆ U dependent on timestamp t. In
the reduced monitoring data, variables in RS keep all raw samples, since they
cannot be derived from other variables. Variables in DS, instead, are collected
at a reduced sampling rate. Samples are used for continuously validating the
reliability of the prediction.

The Reduction Plan is the key element of the AMS and the basis for
the service to enact data reduction. It gives information on which variables to
reduce and on how to reconstruct their value from their correlate variables. It
consists of the following parts: (i) RS/DS partition: the set of variables U is
partitioned into the two subsets RS and DS. The partition at timestamp t is
denoted as < RSt, DSt >; (ii) CVS : for each variable in DS the set of correlated
variables cvst,k is used to train the prediction function of dvk ∈ DS at time t;
(iii) Prediction parameters: the prediction parameters describe the quantitative
relation between a variable dvk and its correlated variables cvst,k. A reduction
plan is represented as a labeled-DAG (LDAG), sub-graph of the DAG of the
dependencies. An edge from vi to vj indicates that vj is reduced and rebuilt
starting from the values of vi. Since the reduction plan can evolve, we denote
the reduction plan used at time t as LDAGt (Eq. 1):

LDAGt = [Nodest, Edgest, Labelst] (1)

Given the Reduction Plan, for each dvk, the service provides the parameters
of the model for enacting the prediction. To capture the correlations between
variables collected by the monitoring system, a regression analysis is performed
on a training dataset. In this paper we have applied Linear Regression as the
regression method, due to its low complexity and reduced execution time given
the need to build the model on edge and fog devices with limited resources and to
quickly rebuild the model when needed. We assume the CV S of vk ∈ DS contains
N variables X = {x1, x2, · · · , xN} and the training dataset comprises samples
of P timestamps. The linear regression method assumes that the relationships
between X and ft,k are linear, as depicted in Eq. 2 at timestamp t:

ft,k(X) = β01 + β1xt,1 + · · · + βnxt,N + εt (2)

In this work, we adopt the Ordinary Least Squares (OLS) method [11] to estimate
the parameters values β, as described in [12]. This approach is only used as a
proof of concept and alternative methods can be adopted. As an example, we
are also investigating alternative solutions such as neural networks.

5 Validation

We applied the AMS to the REFIT Smart Home dataset1, which includes sensor
measurements of smart buildings and climate data recorded at a nearby weather

1 https://lboro.figshare.com/articles/REFIT Smart Home dataset/2070091
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Table 1. Reduction performance scoring of B05 and B06 variables

DV CVS corr.

B06 HW1 Temp B06 S1 Temp 0.88

B05 LR1 Temp B05 K1 Temp 0.86

B06 BR1 Temp B06 K1 Temp 0.85

B05 BR2 Temp B05 S1 Temp 0.89

B05 BR3 Temp B05 BR2 Temp B05 S2 Temp 0.96

B05 BR1 Temp B05 S1 Temp 0.85

B06 BT2 Temp B06 BR3 Temp 0.89

B06 BT3 Temp B06 LR1 Temp B06 BR1 Temp 0.90

B06 LD1 Temp B06 BT3 Temp 0.80

B05 BR4 Temp B05 BR1 Temp B05 BR3 Temp 0.98

B06 K1 Temp B06 LR1 Temp B06 S1 Temp 0.88

station. Each building is connected to an edge device, collecting the information
before sending them to be stored in the cloud.

We used the data collected in 80 days, from 2014-02-05 to 2014-05-05 at
a fixed sampling interval of 30 minutes. We used 14 days of data to train the
Reduction Plan, then we tested the performance of data reduction with the
data left (59 days). Applying the proposed methodology, we found 31 regressor
variables rv and 43 dependent variables dv to be predicted. For 17 of these
dvs, the AMS reduces the sensor data of more than 40% while maintaining a
reasonable accuracy. Tab. 1 shows a subset of the selected reductions, focusing
on buildings B05 and B06. The first column represents the DS discovered while
column 2 represents the CV S for each dv. The correlation value of the relation
is shown in column 3. As it can be observed, strong relations are discovered
between variables of the same kind in the same building, and most of all between
temperatures of different rooms. The reduction ratio for the whole dataset of 74
variables in 59 days is 15.95%. This is a good achievement considering also that
31 variables are not reduced and that a portion of the 43 dvs are collected as raw
data during the validation and re-training phases. The average reduction ratio
considering only the 43 dvs is 27%.

6 Concluding remarks

The Adaptive Monitoring Service proposed in this paper aims to identify a new
systematic reduction of sensor data transmitted in a fog architecture. The rela-
tionships among the variables are exploited to reduce the data flow between the
layers of a fog environment. The implications on service deployment have been
discussed and an example based on a smart city scenario has been presented.

In future work we are going to refine the proposed methodology by focusing
on the service deployment. We aim to propose an optimised deployment strategy
considering the heterogeneity of the monitoring services and of the nodes in

5



which they can be executed. We will also introduce latency for evaluating the
effectiveness of the reduction plans when dealing with high data volumes.
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