
Learning Problem Solving Skills from
Demonstration:

An Architectural Approach

Haris Dindo1, Antonio Chella1, Giuseppe La Tona1, Monica Vitali1, Eric
Nivel2, Kristinn R. Thórisson2,3

1 Computer Science Engineering, University of Palermo (UNIPA/DINFO)
Viale delle Scienze, Ed. 6, 90100 Palermo, Italy

haris.dindo@unipa.it, chella@unipa.it, latona@dinfo.unipa.it,

vitali@dinfo.unipa.it
2 Center for Analysis & Design of Intelligent Agents and School of Computer Science

(CADIA)
Reykjavik University, Menntavegur 1, IS-101 Reykjavik, Iceland

nivel@ru.is
3 Icelandic Institute for Intelligent Machines

Uranus 2. h., Menntavegur 1, IS-101 Reykjavik, Iceland
thorisson@iiim.is

Abstract. We present an architectural approach to learning problem
solving skills from demonstration, using internal models to represent
problem-solving operational knowledge. Internal forward and inverse mod-
els are initially learned through active interaction with the environment,
and then enhanced and finessed by observing expert teachers. While a
single internal model is capable of solving a single goal-oriented task, it
is their sequence that enables the system to hierarchically solve more
complex task. Activation of models is goal-driven, and internal ”mental”
simulations are used to predict and anticipate future rewards and perils
and to make decisions accordingly. In this approach intelligent system
behavior emerges as a coordinated activity of internal models over time
governed by sound architectural principles. In this paper we report pre-
liminary results using the game of Sokoban, where the aim is to learn
goal-oriented patterns of model activations capable of solving the prob-
lem in various contexts.

1 Introduction

Complex systems require a significant amount of work to be programmed and
maintained. Research on programming by demonstration, or imitation learning,
has recently been seen by the scientific community as a promising approach
for simplifying programming efforts. It is inspired by the remarkable ability
of humans to learn skills by simply watching others performing them. From
the methodological point of view, programming by demonstration is an efficient
method for pruning high-dimensional search space and it makes the task of learn-
ing problem solving skills computationally feasible. However, these advantages



come at the cost of increased architectural complexity and are still far from being
solved in the scientific community.

In this paper we describe an architecture4 for learning problem solving skills
from demonstration and by active interaction with the environment. In contrast
to constructionist A.I., in which complete specification of knowledge is provided
by human programmers, ours is a constructivist A.I. approach, where an archi-
tecture continuously expands by self-generating code (e.g. models) [1]. We target
goal-level imitation, where imitation is seen as the process of achieving the in-
tention hidden in the observation of an action[2]. In other words, it is not the
means that are imitated but rather the goal of a demonstration. Central to the
computational modeling of such intentional actions is the idea that understand-
ing others can be efficiently achieved by reenacting one’s own internal models
in simulation [3]. It is thought that similar mechanisms could lead to higher
cognitive processes like imagery, anticipation and theory of mind [4, 5]

We are working towards an architecture that can incrementally learn se-
quences of internal model activations from demonstration. It is based on the idea
of coupled forward-inverse internal models for representing goal-directed behav-
iors [6, 7]. A forward model is a predictor that, given the state of the system and
a command, produces a prediction of the future outcome of the given command.
An inverse model, known also as controller in control theory, produces com-
mand(s) necessary to reach a goal state given the present state. Internal models
are powerful constructs able to represent operational knowledge of an agent and
to govern its interaction with the environment. While a single internal model is
capable of solving a single goal-oriented task, it is their sequence that enables
the system to hierarchically solve more complex task.

The architecture is thus model-based and model-driven, and it solves all tasks
by exploiting the set of such learned internal models. The system is designed to
avoid the use of explicit planning: intelligent behavior emerges from the interac-
tion of incrementally learned skills. Internal models encode various behavior of
the system and an ad hoc module is responsible for coordinating the activation
of the most significant internal models given the actual state of the system and
the goal. In a similar way, learning of complex skills is achieved by composing
and coordinating simple ones (as encoded by models).

The article is organized as follows. We first give a high-level overview of our
architecture in sec. 2, and then we discuss how is the architecture used to learn
skills by imitation in sec. 3. Section 4 explains how the architecture has been
used to learn problem solving skills in typical A.I. test-bed, the Sokoban game.
Finally, we outline the conclusions and future works in sec. 5.

4 The architecture is being built by the HUMANOBS consortium as part of the HU-
MANOBS FP7 project led by CADIA/Reykjavik University; details of this archi-
tecture will be presented in future papers.



2 Architecture

While the architecture we are building will be extensively described in future
publications, a cursory overview of its main components relevant to imitation
learning will now be given. The basic building blocks of our architecture are
internal models, both forward and inverse, which represent an agent’s functional
knowledge (i.e. they are executable), and are learned by the system through
continuous interaction with the environment. The system is able to observe how
the environment changes as a consequence of an event (both exogenous and self-
produced) and to encode this causal relation between the current context and a
proximal goal into an internal model. Complex chains of causal relations, linking
the current context to a distal goal, are learned by adopting the paradigm of im-
itation learning where the agent focuses its computational efforts on interesting
parts of the problem search space only.

Models operate on states of the world, including those regarding the agent
itself. We will formalize the notion of the state shortly. For the discussion that
follows, it suffices to stress that states need not to be complete (in a Markovian
sense), nor uniquely defined. In this respect, states will be composed of facts
that hold in the world.
The agent senses the world through messages, where each element of a message
holds a true fact in the world as observed through a set of predefined perceptual
processes. Each time a change is detected in the world (either as the effect
of agent’s actions or external phenomena) a message is generated. Messages are
given in the form marker-value, where value can be of any kind (integer, boolean,
string, etc.). Having introduced messages, the state can be defined as a collection
of messages produced by a set of predefined perceptual processes related to the
world (including the agent itself).

Internal models operate on states. An internal model is a structure containing
a couple of pattern lists and a production. The pattern lists restrict the applica-
bility of a model: a state can be input to a model only if its messages match the
patterns on the list. The same structure is used to encode forward and inverse
models. The qualifiers ’forward’ and ’inverse’ describe a pattern-matching-wise
arrangement of said models and their inputs: shall the latter match the right-
side, the model operates as an inverse model, a forward model otherwise.

Learning is initially triggered by domain-dependent knowledge stored in a
component called Masterplan. It stores a set of primitive skills together with an
initial ontology, goals and heuristics needed to monitor the learning progress.
By directly interacting with the world the system generates hypotheses of new
models through a component called Model proposer. These will be stored in
Masterplan and tested in real situations in order to assess their usefulness.
The system learns new models by observing the world and interacting with it.
The components depicted in Fig. 1 continuously analyze the perceptual data in
order to acquire new knowledge. Initially the system interacts with the world
executing casual actions in order to learn simple causal relations of the entities
of the world and of itself - a process common in newborns called motor babbling



Fig. 1: How does the learning happen in the system? Environment is sensed through
a set of existing models, and obtained percepts are analyzed in order to generate novel
models by the “Model proposer” component. Models can be as simple as a composition
of simple facts of the world, or complex sequences of existing models. This process is
bootstrapped by existing knowledge stored in a component called ’Masterplan’. Gener-
ated models are themselves stored in the Masterplan for their validation and possible
future usage. Interaction with the environment is performed through the Model exe-
cution component, which is directly connected with the world.

[8]. More complex models, encoded as chains of simple models activations, are
learned by observing other skilled actors performing goal-directed tasks.

In order to exhibit robustness, the system must be able to generalize learned
behaviors to novel, previously unseen, situations. To do this the system needs to
reason about its own models and propose new, more general, models. In addition,
the agent has to anticipate its future and to make decisions based not only on
the actual and previous states of the system, but also on a prediction of a future
state. Our architecture offers a mechanism of anticipation that is based on the
knowledge encoded in the internal models.

When acting, the agent needs to decide what to do in a particular situation
in order to achieve its goals. Fig. 2 depicts the components used to exploit mod-
els for acting. A decision making module, the Decision maker, is responsible of
selecting which internal models to execute given the goal and the current situa-
tion. Decisions are made reactively and in parallel by exploiting all the available
knowledge at present. Since multiple decisions can be made, we have developed
a module that anticipates potentially useless or dangerous choices, and uses this
information to decide which decision to execute. The Simulation module pre-
dicts the outcome of a decision by chaining the activations of internal models.
The Decision maker uses the heuristics defined in the Masterplan to evaluate the
desirability of a predicted future state. The Anticipation module analyzes the
simulation looking for failures of the system or difficulties encountered. Conse-



Fig. 2: How does the system act? Interactions with the environment are performed
through the “Model execution” module which is controlled by a “Decision maker”
component. The former is responsible for the coordination of acquired models of the
system. The anticipation module is responsible for simulating the execution of models
and their online correction.

quently, it might suggest anticipating a future production in order to avoid such
situations.

3 Learning problem solving skills

Models encode problem-solving skills as chains of actions towards a goal, para-
meterized through patterns expressing states in which models are applicable (i.e.
preconditions). For the discussion that follows, it is convenient to introduce a
distinction between low-level and high-level models. In our definition, low-level
models encode a direct causal relations between events the agent observes. For
example, a low-level model could describe how a room illumination changes as
a consequence of pushing the switch. On the other hand, high-level models pre-
scribe actions needed to reach distal goals, or to predict the outcome of a present
action arbitrarily far in the future. As an example, a high-level model can de-
scribe how to switch on the light in a different room from the one the agent is
currently in. Such a scenario would require the agent to exit the room, reach the
desired room, enter it, look for the switch and turn it on, where each act in the
chain could be described by either a low- or high-level model.

The system tries to explain the events it observes in terms of its current
repository of internal models by reenacting them in simulation. Whenever it
fails, model learning is triggered which proposes new models. The Model pro-
poser component produces a new low-level model by analyzing differences in
state before and after an action has been executed, or an external event has
been observed. We assume that each state transition can always be conveniently
expressed as a combination of elementary models stored in the Masterplan. The



module called Pattern Extractor is responsible for generating the patterns on the
messages that will be used to restrict the application of a model to situations
similar to the observed one. Finally, the Model proposer produces a new forward
model that predicts a state transition given an input. By inverting the forward
model, the system produces its corresponding inverse model.

High-level models are learned through imitation learning. This process is
accomplished by observing a demonstrator carrying out a task and trying to
match its behavior with the set of available models.5 To this end, forward and
inverse models are used in couples to rank activations of those models that
best explain the current observation (see [3] for details). A dedicated process is
in charge of analyzing the sequence of activated models in order to detect key
states encountered during demonstrations which will constitute sub-goals for the
learning agent. The Model proposer then produces a sequence of sub-goals and
patterns which compose the high-level model (patterns are produced in the same
way as in low-level model acquisition).

However, newly acquired low- and high-level models are too specific since
they have been learned from a single observation. As an example, suppose the
agent learns how to switch on the light in a room. The model created is initially
tailored to the particular room where the demonstration has been performed, as
the agent has no means to assess whether the model could be applied in similar
situations. A module called Model generalizer is responsible for the generation
of new models that inductively generalize more specific ones. This process is
triggered each time a model is created that shares the production section with a
previously acquired model. If the only difference between these models is their
pattern section, meaning that the same model can possibly be applied to both
situations. A set of predefined rewriting procedures are applied that create a
single, more general model.

3.1 Bootstrapping the learning process: Masterplan

Masterplan stores the domain-dependent knowledge that all the domain-independent
components of the system use to produce new models and hence new knowledge.
The Masterplan is not a fixed entity: it expands as the agent acquires novel
knowledge through its own experience and learning.

In our system, prior knowledge in the Masterplan includes:

– a set of a-priori defined forward and inverse models; these models are aug-
mented at runtime through the processes of motor babbling and imitation
learning (the initial cannot be empty);

– a set of innate goals/subgoals and a monitoring process which provides the
currently active goals/subgoals;

– facts about salient aspects in the world;
– an ontology which describes relations between entities in the world;

5 Demonstrations should be performed in a bottom-up way: whether a task includes
complex subtask, these should be thought first.



– a heuristic which evaluates the goodness of a state given a set of subgoals;
– a list of primitive actions the agent can perform: more complex behaviors

will be hierarchically built starting from the same set of elementary ones.

Starting from these “innate” principles, the agent will be able to acquire
knowledge by direct experience and to learn strategies through observation of
other expert teachers. During interaction, only relevant aspects of the world are
taken into consideration through a set of predefined attention mechanisms in the
Masterplan. The Masterplan also holds predicates for assessing the similarity
between two sets of messages, used to guide the learning phase.

New models are learned by combining innate primitive models provided in
the Masterplan. In our architecture, these primitive models are defined by pro-
grammers as a set of elementary functions describing known facts about state
transitions; a primitive model can e.g. relate position and velocity through known
physical laws which combine elementary functions of multiplication and addi-
tion, and a set of ontological relations which describes how these functions can
be applied to a given state (e.g. multiplication is not well defined for string
variables).

4 Case study: Sokoban

In order to test the ideas described we chose a simplified version of the well-known
Sokoban game as a case study, which presents a handy subset of our ultimate
target application field(s) of the architecture. Sokoban is classified as a motion
planning PSPACE-complete problem and as an NP-HARD space problem [9].

In our version of the game the agent moves a given number of blocks ran-
domly placed in a grid; the goal is to place each block in a given final position.
The number of blocks is a free parameter and can be set by the user. In our
experiments we decided to use three blocks. An example of an initial grid con-
figuration is shown in Fig.3 (left).

Whenever the agent performs an action, its perceptual sensors produce mes-
sages related to its position in the environment, and that of blocks. Messages
indicating whether a block is next to another, or whether a block is next to the
border are also given. The Masterplan holds a set of a-priori facts and models
about the game. We defined elementary functions of the primitive models as
mathematical and logical functions that compose any state transition as a con-
sequence to an agent’s act. These functions are increment and decrement for the
numerical values, negate for logical values and the identity function that can be
applied to any value. We have also defined ontological relations that specify how
the elementary functions can be applied to the elements of a state (e.g. the incre-
ment and decrement functions can be applied to the coordinate of the blocks and
of the agent). The Model proposer module analyzes the perceived transitions of
state as a composition of elementary functions; the ontological relations are the
constraints for this analysis.

The Masterplan also holds a heuristic to evaluate a state with respect to the
desired goals. This heuristic is based on the Manhattan distance of blocks from



their desired position and on the measure of the degrees of freedom of both the
agent and the blocks (in order to avoid deadlock configurations).

Instead of focusing on the computational costs of our approach and on com-
paring it to other Sokoban solvers, we have performed experiments aiming to
assess the validity of our architecture as a general architecture for learning prob-
lem solving skills by imitation. We present results for various aspects of the
architecture.

To test the results we consider how the agent predicts the outcome of an
action in a set of defined states. This set of states was chosen to represent some
of the most commonly encountered situations in the Sokoban game, together
with few particular and rare configurations.

By analyzing the results of the motor babbling we provide an evaluation
of the performances of the model acquisition and generalization processes. The
parameters used in the motor babbling phase are: a) the number of actions to
execute for each trial and b) the total number of trials. We have performed
several tests by varying these parameters.

To evaluate models learned by imitation we have collected feedback from
a group of randomly chosen subjects who have been asked to demonstrate a
particular problem solving behavior to the system.6 After the learning phase,
each subject has been asked to grade the system’s ability to solve similar tasks
in a range of situations: a) whether the system was able to successfully complete
the task and b) give a score from 1 to 10 related to the quality of the observed
behavior, 10 being best and 0 meaning ”no ability to perform”.

4.1 Results: Motor babbling

For each run of the motor babbling, we store the predictions of the system for
each of the encountered states. These predictions are then compared to the real
outcome of the actions in corresponding states.

Through the motor babbling phase the system acquires its low-level internal
models and learns how to interact with the environment. As shown in the ex-
perimental data(see table 3 (right)), the accuracy of the predictions grows with
the number of trials played and actions taken. This could at first sound obvious:
by increasing the number of trials we increase the amount of available data to
analyze. However, it is worth noticing that the number of actions executed in a
trial plays a marginal role compared to the total number of trials played. This
can be explained by the fact that the motor babbling in a specific game tends
to remain in states that are similar to the initial one. In order for the system to
experience a wider range of situations, we need to increase the number of trials
played.

6 Participants were 6 male and 3 female PhD students from our lab; each participant
played twelve trials on average.



(a) Sokoban game

50 100 150 200

50 0.375 0.375 0.375 0.375

100 0.375 0.5 0.5 0.5

150 0.7 0.7 0.7 0.8

200 0.8 0.88 0.88 0.88

250 0.9 0.9 0.9 0.9

300 0.9 1 1 1

(b) Motor babbling results

Fig. 3: (left) A possible state in the Sokoban game; (right) Performance of our archi-
tecture in motor babbling: columns represent the number of steps in a trial, while rows
represent the total number of trials; each cell contains the success ratio in predicting
the correct outcome.

4.2 Results: Imitation

The results of the human demonstrator evaluation of subsequent system perfor-
mance, after demonstrations, show that the system is able to learn new skills
from the demonstration and to apply them in novel situations. Satisfaction anal-
ysis shows that more than 80% of participants judged the system’s performances
”more than sufficient” (a vote greater than 6). In particular, when the system
was able to anticipate a production the evaluation was greater or equal than 8.
This confirms that the anticipation ability is subjectively considered a necessary
skill for any intelligent behavior.

5 Conclusions

In this paper we described new principles for learning complex problem solving
skills through imitation. Our approach is based on constructivist A.I. principles,
which proposes pervasive architectural self-modification as prerequisites for holis-
tic system learning and self-expansion [1]. Our architecture allows self-expansion
through a set of modules and a ”Masterplan” that encodes initial bootstrapping
knowledge to guide it. Before acting in the real world a system based on this
approach runs actions in ”simulation mode” using internal models, for the pur-
poses of anticipation. These same set of models also enable our system to reach
its goals, provided real-world experiences; our architecture allows the system to
learn its internal models by observing other skilled actors.

As the whole architecture is model-based, learning is devoted to constantly
acquiring new forward and inverse models. However, learning does not occur
from scratch but it is rather bootstrapped by domain-dependent knowledge con-
tained in the Masterplan; it holds the so called ”first principles” that enables
the system to learn more complex goal-directed behaviors. This approach has
an obvious advantage over more traditional (i.e. hand-coded) architectures, as it



allows ”goal-level” imitation, in which what is learned is the goal of the demon-
stration, rather than a particular sequence of acts to imitate. This is the most
powerful way of learning, as the system acquires what amounts to an ”under-
standing” of a set of actions - that is, the knowledge that the system acquires
lends itself to explaining, which in turn (in our approach) allows the system to
evaluate alternative explanations and choose between them based on available
evidence.

Future work will focus on making the principles presented here more robust,
expanding the architecture to be able to learn not only goals but also actively
choosing which level of detail is appropriate to imitate, e.g. surface-level (mor-
phology), goal-level (intention), or some combination thereof. Such a system
should be applicable to a wide range of task learning scenarios, as many human-
level tasks are in principle a complex mixture of the two. By having addressed
the more difficult of these, namely goal-level imitation, we are optimistic about
creating such a system in the near future.

Acknowledgments

This work has been supported in part by the EU funded project HUMANOBS:
Humanoids That Learn Socio-Communicative Skills Through Observation, con-
tract no. FP7-STREP-231453 (www.humanobs.org). The authors would like to
thank the HUMANOBS Consortium for valuable discussions and ideas, which
have greatly benefited this work.

References

1. K.R. Thórisson. From constructionist to constructivist AI. AAAI Fall Sympo-
sium Series: Biologically Inspired Cognitive Architectures, AAAI Tech Report FS-
09-01:175–183, 2009.

2. A. Chella, H. Dindo, and I. Infantino. A cognitive framework for imita-
tion learning. Robotics and Autonomous Systems, 54(5):403–408, 2006. doi:
10.1016/j.robot.2006.01.008.

3. D.M. Wolpert, K. Doya, and M. Kawato. A unifying computational framework for
motor control and social interaction. Philosophical Transactions of the Royal Society
B: Biological Sciences, 358(1431):593, 2003.

4. R. Grush. The emulation theory of representation: Motor control, imagery, and
perception. Behavioral and brain sciences, 27(03):377–396, 2004.

5. Y. Demiris. Prediction of intent in robotics and multi-agent systems. Cognitive
Processing, 8(3):151–158, 2007.

6. M. Kawato. Internal models for motor control and trajectory planning. Current
opinion in neurobiology, 9(6):718–727, 1999.

7. D.M. Wolpert and Z. Ghahramani. Computational motor control. Science,
(269):718–727, 2004.

8. A.N. Meltzoff and M.K. Moore. Explaining facial imitation: A theoretical model.
Early development and parenting, 6(34):179–192, 1997.

9. D. Dor and U. Zwick. SOKOBAN and other motion planning problems. Computa-
tional Geometry, 13(4):215–228, 1999.


